Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How young mice phone home: Study gives clue to how mothers' brains screen for baby calls

12.06.2009
Emory University researchers have identified a surprising mechanism in the brains of mother mice that focuses their awareness on the calls of baby mice. Their study, published June 11 in Neuron, found that the high-frequency sounds of mice pups stand out in a mother's auditory cortex by inhibiting the activity of neurons more attuned to lower frequency sounds.

"Previous research has focused on how the excitation of neurons can detect or interpret sounds, but this study shows the key role that inhibition may play in real situations," said Robert Liu, assistant professor of biology and senior author of the study.

In 2007, Liu and colleagues were the first to demonstrate that the behavioral context in which communication sounds are heard affects the brain's ability to detect, discriminate and respond to them. Specifically, the researchers found that the auditory neurons of female mice that had given birth were better at detecting and discriminating vocalizations from mice pups than auditory neurons in virgin females.

Experiments on awake mice
While that experiment was done with anesthetized mice, the current study by Liu's lab is the first to record the activity of neurons in the auditory cortex of awake mice. Both female mice that had given birth and virgin female mice with no experience caring for mice pups were used in the study.

When exposed to the high-frequency whistles of mice pups, which fall into the 60 to 80 kilohertz range, a large area of neurons in the auditory cortex of the mother mice was more strongly inhibited than in the virgin mice. The pattern of excitation of neurons was similar, however, for both the mothers and virgins.

"Something different is happening in the mothers' brains when they are processing the same sound, and this difference is consistent," Liu said. "The inhibition of neurons appears to be enhancing the contrast in the sound of mice pups, so they stand out more in the acoustic environment."

Showing neural plasticity

Liu's research focuses on how the brain evolves to process sounds in the natural environment. "By understanding normal functioning of the auditory processes in the brain, then we can begin to understand what is breaking down in disease situations, such as following a stroke or brain lesion," he said.

Until recently, it had been widely assumed that the auditory cortex acted simply as a static filter, and that areas downstream in the brain did the complex task of learning to parse meaning from sounds.

"What our experiments help demonstrate is that even at this relatively early stage of cortical sound processing, responses are dynamic," Liu said. "The auditory cortex has plasticity, so that sounds that become behaviorally relevant to us can get optimized."

More research is needed, he added, to determine whether the changes in the brains of mother mice is due to hormonal shifts, the behavioral experience of caring for pups, or both.

The study authors include Edgar Galindo-Leon, a post-doctoral fellow in Liu's lab, and Frank Lin, a graduate student in the lab. Their research was funded by the National Institute for Deafness and Communication Disorders and the NSF Center for Behavioral Neuroscience.

Carol Clark | EurekAlert!
Further information:
http://www.emory.edu
http://www.emory.edu/esciencecommons

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>