Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Win-win strategies for climate and food security

02.10.2017

Efforts to reduce greenhouse gas emissions from the agriculture and forestry sectors could lead to increased food prices—but new research identifies strategies that could help mitigate climate change while avoiding steep hikes in food prices.

Climate policies that target agriculture and forests could lead to increased food prices, but reducing deforestation and increasing soil carbon sequestration in agriculture could significantly reduce greenhouse gas emissions while avoiding risk to food security, according to new research published in the journal Environmental Research Letters.


Relative price impact of a carbon tax (0 – 150 $/tCO2eq) on emissions from agriculture on global commodity prices and regional food price index

Frank et al 2017


Trade-offs and synergies between annual land sector mitigation and dietary energy consumption by 2050 under a uniform carbon price

Frank et al 2017

As countries look to reduce their greenhouse gas emissions, many see potential in their forests and farms. The land-use sector, which includes agriculture and forestry, contributes approximately 25% of the human-caused greenhouse gas emissions that are contributing to climate change. At the same time, vegetation, including natural as well as agricultural lands, take up CO2 from the atmosphere and can store it in biomass and the soil.

“The land-use sector is key for successful climate change mitigation,” explains IIASA researcher Stefan Frank, who led the study. “But providing an increasing amount of biomass for energy production to substitute fossil fuels while at the same time reducing emissions from the land use sector, for example through a carbon tax, could also have the effect of raising food prices and reducing food availability.”

In the study, Frank and colleagues explored the impacts of climate mitigation policies on food prices. They examined the potential impacts of both global action, represented by a carbon tax, and regional and national policies.

The study showed that a stringent mitigation target for the agriculture and forestry sectors could lead to increased food prices and reduced food production. Though globally coordinated mitigation policies outperform regional or national policies both with respect to emission abatement and food security, adverse impacts on food security remain. The study presents two strategies that could bring benefits for climate while simultaneously maintaining food security: reducing deforestation and increasing soil carbon sequestration.

Reducing deforestation is not a one-size-fits-all solution

The study found that in countries with a lot of land and a high proportion of emissions from land-use change, such as Brazil or Congo Basin countries, there is a large potential for forest restoration and preventing deforestation.

However, in more densely populated countries with emission intensive agriculture such as China and India, strict efforts to reduce agricultural emissions could lead to substantial impacts on food security, while not providing big climate benefits due to emission leakage. Emission leakage means that emissions that are saved due to a policy within one country would be replaced by additional emissions outside the country.

“In some countries, stopping deforestation could provide a big reduction in emissions with only a marginal effect on food availability,” says Frank. “But a one-size-fits-all approach will not work. In places like China and India, the focus should be on soil organic carbon sequestration and other win-win options that decrease the emission intensity of agriculture.”

Increasing soil carbon sequestration
Certain farming practices, such as crop rotation, cover cropping, and residue management, can preserve greater amounts of carbon stored in soils. It turns out that these practices also generally lead to greater crop yields.

“You keep the soil healthy, you offset greenhouse gas emissions, and you preserve crop yields at the same time,” says Frank. In fact, under a carbon price policy, soil carbon sequestration measures could even provide additional revenue for farmers as they get paid for the carbon sink they provide.

Depending on the climate policy design, the researchers found that soil carbon sequestration on agricultural land could either deliver the same levels of greenhouse gas abatement in the land use sector at considerably lower calorie costs compared to a policy that does not consider the potential of soil carbon sequestration, or even higher greenhouse gas abatement and less pronounced benefits for food security. The study estimated that increased soil carbon sequestration could offset up to 3.5 GtCO2 (7% of the total 2010 emissions) in 2050, and could reduce the food security impacts of a carbon tax by as much as 65% compared to a scenario without soil carbon sequestration incentives.

“This study shows the major role of soil organic carbon sequestration for ensuring food security under climate stabilization scenarios,” says Jean-Francois Soussana, a study coauthor from the French National Institute for Agricultural Research (INRA). “Agricultural soils could provide a key solution for climate change mitigation and adaptation and for food security, but changing land management to store carbon in soil organic matter will require large efforts that could be facilitated by multi-stakeholder platforms like the 4 per 1000 initiative.”

This study shows how including an existing but largely ignored mitigation option in policy planning could substantially improve the climate policy performance with respect to food security. “Given the challenge of stabilizing climate change below 2 degrees, all options need to be carefully considered to minimize trade-offs, and potentially achieve complementarity, with other Sustainable Development Goals,” concludes IIASA researcher Petr Havlík, another study coauthor.

Reference
Frank S, Havlík P, Soussana JF, Levesque A, Valin H, et al. (2017) Reducing greenhouse gas emissions in agriculture without compromising food security? Environmental Research Letters. 2 October 2017. https://doi.org/10.1088/1748-9326/aa8c83

IIASA Press Office | idw - Informationsdienst Wissenschaft
Further information:
http://www.iiasa.ac.at

More articles from Studies and Analyses:

nachricht AI study of risk factors in type 1 diabetes
06.03.2019 | University of Gothenburg

nachricht Rising CO2 has unforeseen strong impact on Arctic plant productivity
21.02.2019 | Max-Planck-Institut für Meteorologie

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>