Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When a fish becomes fluid

17.12.2018

Fluidity transition in zebrafish embryo necessary for development – Study published in Nature Cell Biology

Zebrafish aren’t just surrounded by liquid, but turn liquid - in part - during their development. As the zebrafish embryo develops from a ball of cells to a fully-formed fish, a region of the embryo switches its phase from viscous to liquid in a process known as fluidity transition.


Cells lose contacts between each other during fluidization. Cells remain in tight contact when fluidization is impaired.

Nicoletta Petridou

Such fluidity transition has long been speculated to exist in living matter, but is described for the first time to occur in a living organism in a study published today in Nature Cell Biology.

The study was carried out by the group of Carl-Philipp Heisenberg at the Institute of Science and Technology Austria, with first author and Postdoc Nicoletta Petridou, and together with the group of Guillaume Salbreux at The Francis Crick Institute and Edouard Hannezo, also at IST Austria.

Zebrafish are particularly suited for studying animal development as the embryo is transparent and develops outside the mother. At the very beginning of zebrafish development, a tissue layer, the so-called blastoderm, spreads over the yolk. The blastoderm changes shape to form a dome, hence this process is known as ‘doming’.

In the study, Petridou et al. investigated the mechanical forces at play during this shape change. By applying pressure to embryonic tissue through a pipette and measuring how fast it deforms, the researchers could infer how viscous or fluid the tissue is: tissue that deforms slowly is more viscous/less fluid than tissue that deforms quickly.

Repeating the experiment at several time points and regions in the developing embryo, the researchers found that during doming, the tissue suddenly fluidizes at a very specific time and tissue region.

“Such a fluidity transition was predicted to happen by theory and models, but here we show for the first time that it happens in a real, living organism”, says first author Nicoletta Petridou.

Lost in division

Why and how does zebrafish tissue become liquid? In “normal” viscous tissue, the cells are in close contact with each other. The authors found that the fluidity transition happens because cells keep on dividing during development. During division, the cells become round and detach from their neighbors.

The more the cells divide, the more connections are lost between them, until they eventually lose so many contacts that the tissue turns liquid. “This is a mechanical and not biochemical change”, explains Petridou, “The embryo is programmed to divide, it cannot escape it.”

All cells in the embryo divide, however, and the researchers observed that only a very specific region of the tissue, the central region of the blastoderm, became fluid. They then looked for a process that would prevent other areas of the embryo from turning fluid.

A certain signaling pathway, the non-canonical Wnt signaling pathway, stopped the fluidity change at the margins of the embryo, says Petridou. “Non-canonical Wnt signaling keeps cells connected and allows the embryo margins to bypass fluidization. We think that the default of the tissue is to become fluid, but the signaling keeps specific areas from turning fluid.”

A sudden change

When the fluidity transition goes wrong – either because the researchers stopped Wnt signaling so that all areas of the blastoderm become fluid, or because they inhibited fluidization in the entire blastoderm – doming is impaired and the embryo progresses more slowly during early development.

“Our study shows that regulated changes in tissue material properties play an important and significant role in morphogenesis”, summarizes Petridou. But the authors might also have found first signs of a well-known concept of physics happening in a living organism.

The very sudden transition from viscous to fluid in the blastoderm resembles a well-known concept from physics, the phase transition. “Phase transitions, such as when water boils, happen suddenly. We called the phenomenon observed in zebrafish ‘fluidity transition’ as we are not certain that it is, in fact, a phase transition in the true sense of physics”, explains Petridou, “However, we are working further to define whether this is a phase transition. Phase transitions can happen in molecular networks, but we don’t yet know if they can happen in a tissue or in an embryo.”

About IST Austria
The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas. http://www.ist.ac.at

Wissenschaftliche Ansprechpartner:

Carl-Philipp Heisenberg
Tel: +43 (0)2243 9000-3901
E-mail: heisenberg@ist.ac.at

Originalpublikation:

'Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling', Nicoletta I. Petridou, Silvia Grigolon, Guillaume Salbreux, Edouard Hannezo, and Carl-Philipp Heisenberg. DOI: 10.1038/s41556-018-0247-4.

Weitere Informationen:

https://ist.ac.at/en/research/research-groups/heisenberg-group/

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

More articles from Studies and Analyses:

nachricht Statistical method developed at TU Dresden allows the detection of higher order dependencies
07.02.2020 | Technische Universität Dresden

nachricht Novel study underscores microbial individuality
13.12.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

 
Latest News

Development of new system for combatting COVID-19 that can be used for other viruses

08.04.2020 | Interdisciplinary Research

Condensed matter: Bethe strings experimentally observed

08.04.2020 | Physics and Astronomy

Synthesis against the clock

08.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>