Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What and how much we eat might change our internal clocks and hormone responses

07.11.2019

For the first time, a study led by researchers at Helmholtz Zentrum München and the German Center for Diabetes Research (DZD) shows how glucocorticoid hormones, such as cortisol, control sugar and fat levels differently during day and night, feeding and fasting, rest and activity, over the course of 24 hours

The research conducted in mice found that the time-of-day dependent metabolic cycle is altered by high caloric diet. Since glucocorticoids are widely used drugs for the treatment of inflammatory diseases, these findings published in Molecular Cell suggest that lean and obese patients might respond differently to steroid therapy.


Example of fatty liver.

@Helmholtz Zentrum München / Uhlenhaut

Finally, it reveals the biological function of daily rhythms of hormone secretion (high before awakening and feeding, low when sleeping and fasting) as well as daily cycles of sugar and fat storage or release by the liver.

Each cell in the human body is driven by an internal clock which follows the circadian rhythm of 24 hours. It is synchronized with the natural cycle of day and night mainly by sunlight, but also through social habits.

In a healthy system, glucocorticoid stress hormones, are produced every morning by the adrenal gland. The secretion of glucocorticoidpeaks before awakening, prompting the body to use fatty acids and sugar as sources of energy, and enabling us to start our daily activities.

When the circadian rhythm is disrupted (e.g. through shift work or jetlag) and/or when the glucocorticoid level alters (e.g. through Cushing syndrome or long-term clinical application), profound metabolic dysregulation can be caused – like obesity, type 2 diabetes, and fatty liver disease.

The researcher’s goal therefore was to understand the relevance of these daily peaks of stress hormone secretion, the impact of these hormones on our “internal clock” and their role for daily cycles of metabolism.

Glucocorticoids’ metabolic actions in the liver

To study glucocorticoids’ metabolic actions in the liver, the researchers characterized the activity of their receptor, called the glucocorticoid receptor, using novel high throughput techniques. They analyzed mouse livers every 4 hours during day and night. The mice were either in normal condition or fed with high-fat diet.

They then used cutting-edge technologies in genomics, proteomics, and bioinformatics to picture when and where the glucocorticoid receptor exerts its metabolic effects. The researchers dissected the impact of daily surges of glucocorticoid release in the 24-hour-cycle of liver metabolism. They could illustrate how glucocorticoids regulate metabolism differently during fasting (when the mice sleep) and during feeding (when they are active), by time-dependent binding to the genome.

Furthermore, they showed how the majority of rhythmic gene activity is controlled by these hormones. When this control is lost (in so-called knockout mice), blood levels of sugar and fat are affected. This explains how the liver controls blood levels of sugar and fat differently during day and night.

In a next step, as the glucocorticoid receptor is a widely-used drug target in immune therapies, they investigated its genomics effects after the injection of the drug dexamethasone, a synthetic glucocorticoid that also activates this receptor.

“With this experiment”, explains Dr. Fabiana Quagliarini, “we found that the drug response was different in obese mice compared to lean mice. It is the first time to show that diet can change hormonal and drug responses of metabolic tissues”.

New insights for Chronomedicine and metabolic disease therapy

Glucocorticoids are a group of natural and synthetic steroid hormones such as cortisol. They have potent anti-inflammatory and immunosuppressive properties which can control the activity of the immune system. This is why they are widely exploited in medicine. The major drawback is that glucocorticoids also cause severe side effects by virtue of their ability to modulate sugar and fat metabolism: Patients may develop obesity, hypertriglyceridemia, fatty liver, hypertension or type 2 diabetes.

“Understanding how glucocorticoids control 24-hour-cycles of gene activity in the liver and consequently blood levels of sugar and fat, provides new insights into ‘Chronomedicine’ and the development of metabolic disease. We could describe a new link between lifestyle, hormones and physiology at the molecular level, suggesting that obese people may respond differently to daily hormone secretion or to glucocorticoid drugs. These mechanisms are the basis for the design of future therapeutic approaches”, highlights Prof. Henriette Uhlenhaut.

Uhlenhaut led the team of researchers from the Institutes for Diabetes and Obesity as well as Diabetes and Cancer at Helmholtz Zentrum München, the German Center for Diabetes Research (DZD), Max Planck Institute of Biochemistry, Northwestern University Feinberg School of Medicine in Chicago and the School of Life Sciences Weihenstephan at Technical University Munich (TUM).

Original publication
Quagliarini et al., 2019: Cistromic reprogramming of the diurnal glucocorticoid hormone response by high-fat diet. Molecuar Cell, DOI:

Wissenschaftliche Ansprechpartner:

Prof. Dr. Nina Henriette Uhlenhaut

Helmholtz Zentrum München
German Research Center for
Environmental Health (GmbH)
Institute for Diabetes and Cancer
Ingolstädter Landstraße 1
D-85764 Neuherberg
Tel. +49 89 3187-2052
E-mail: henriette.uhlenhaut@helmholtz-muenchen.de

Originalpublikation:

https://www.cell.com/molecular-cell/fulltext/S1097-2765(19)30767-1

Verena Schulz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt
Further information:
http://www.helmholtz-muenchen.de

More articles from Studies and Analyses:

nachricht Novel study underscores microbial individuality
13.12.2019 | Bigelow Laboratory for Ocean Sciences

nachricht TU Dresden biologists examine sperm quality on the basis of their metabolism
29.11.2019 | Technische Universität Dresden

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Protein pores packed in polymers make super-efficient filtration membranes

A multidisciplinary team of engineers and scientists has developed a new class of filtration membranes for a variety of applications, from water purification to small-molecule separations to contaminant-removal processes, that are faster to produce and higher performing than current technology. This could reduce energy consumption, operational costs and production time in industrial separations.

Led by Manish Kumar, associate professor in the Cockrell School of Engineering at The University of Texas at Austin, the research team describes their new...

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Scientists find far higher than expected rate of underwater glacial melting

29.01.2020 | Earth Sciences

What's in your water?

29.01.2020 | Power and Electrical Engineering

Screening sweet peppers for organic farming

29.01.2020 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>