Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whales, ships more common through Bering Strait

26.02.2014

The Arctic is home to a growing number of whales and ships, and to populations of sub-Arctic whales that are expanding their territory into newly ice-free Arctic waters.

A study of the narrow passage of the Bering Strait uses underwater microphones to track the whales by their sounds. Three years of recordings reveal more detections of both Arctic and sub-Arctic whales traveling through the narrow choke point.


A fin whale is shown breaching the water's surface.

Credit: Kate Stafford, UW

Kate Stafford, an oceanographer with the University of Washington's Applied Physics Laboratory, will present the results Feb. 26 at the Ocean Sciences meeting in Honolulu. The recordings show Arctic beluga and bowhead whales migrating seasonally through the region from the Arctic south to spend winter in the Bering Sea. They also detect large numbers of sub-Arctic humpback, fin and killer whales traveling north through the Bering Strait to feed in the biologically rich Chukchi Sea.

"It's not particularly surprising to those of us who work up in the Arctic," Stafford said. "The Arctic seas are changing. We are seeing and hearing more species, farther north, more often. And that's a trend that is going to continue."

Stafford placed microphones below the water's surface and recorded in summer and early winter from 2009 to 2012 as part of a U.S.-Russian scientific collaboration. Melodious humpback whale songs showed up regularly on recordings into late fall. Fin and killer whales, which are southern species that seldom travel into Arctic waters, were heard into early November.

"These animals are expanding their range," Stafford said. "They're taking advantage of regions in seasons that they may not have previously."

The recordings also picked up ships using the ice-free summers to travel through two international shipping lanes. This poses an increased risk of collisions between whales and ships, and of noise pollution.

"Marine mammals rely primarily on sound to navigate, to find food and to find mates. Sound is their modality," Stafford said. "If we increase the ambient sound level, it has the potential to reduce the communication range of cetaceans and all marine mammals."

The Bering Strait is famous as a land bridge that prehistoric humans used to travel from Russia to North America. Today, the waterway is 58 miles wide and maximum 160 feet deep, with about one-third of its span in U.S. waters and the rest in Russia. The two coasts are quite different, Stafford said, which makes the international collaboration essential to understanding the full environment.

A recent paper by Stafford and other scientists includes visual sightings of killer whales, a quieter southern-dwelling whale, just north of the strait in the southern Chukchi Sea. Killer whales are now seen fairly regularly in this area, which is being considered for oil and gas exploration.

"The Arctic areas are changing," Stafford said. "They are becoming more friendly to sub-Arctic species, and we don't know how that will impact Arctic whales. Will they be competitors for food? Will they be competitors for habitat? Will they be competitors for acoustic space, for instance these humpbacks yapping all the time in the same frequency band that bowheads use to communicate? We just don't know."

Stafford supports the idea of slowing ship speeds in the Bering Strait, reducing motor noise and the chance of ship strikes.

Another suggestion to protect whales builds on tagging work showing that bowhead whales tend to travel up the U.S. side on the way north in the spring and on the Russian side on their way back in the fall. The proposal suggests that ships follow the American coast in the fall and the Russian coast in the spring to reduce interactions between ships and whales.

Still to be explored is whether the increased whale travel through the region is due to rising whale populations, expanded ranges, or both. Logbooks from Soviet whaling ships in the mid-to-late 20th century report sub-Arctic whales in the region, but none were seen from about 1980 to 2010.

"The question is, are these whale populations recovering and so they're reoccupying former habitat, or are they actually invading the Arctic because they can, because there is less seasonal sea ice?" Stafford said.

Collaborators on the research are Janet Clarke at Leidos Inc. and Sue Moore at the National Oceanic and Atmospheric Administration. The research was funded by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration.

For more information, contact Stafford at 206-685-8617 or stafford@apl.washington.edu.

Stafford will speak in Session #102 at the Ocean Sciences meeting in Honolulu on Wednesday, Feb. 26 at 2:45 p.m. in room 316A.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

Further reports about: Administration Arctic Atmospheric Laboratory Ocean Oceanic Russian acoustic killer species

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>