Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

West Virginia chemical spill contaminating air and water quality, according to Virginia Tech study

27.03.2014

In the more than two months since the Jan. 9 chemical spill into West Virginia's Elk River, new findings reveal the nature of the chemicals that were released into the water and then into the air in residents' houses.

"Based on our increasing understanding of the chemicals involved in the water crisis, the complexities and implications of the spill keep growing," said Andrea Dietrich (http://www.cee.vt.edu/people/dietrich.html), professor of civil and environmental engineering at Virginia Tech. "People are still afraid to drink the water; odors persist in schools, residences, and businesses; data are still lacking for the properties of the mixture of chemicals in the crude MCHM that spilled."

The lack of data motivated Dietrich and her research team to take on essential odor-related research that went beyond their National Science Foundation Rapid Response Research grant to better understand the properties of the chemical mixture called crude 4-methylcyclohexane methanol, the major component in the crude mix of the spilled chemicals into the Elk River. It is used in the separation and cleaning of coal products.

Rapid Response grants are the agency's funding mechanism when a severe urgency exists in terms of the availability of data.  

When Dietrich's team first started, their goal was to conduct detailed scientific investigations to determine the long-term fate of the chemicals in the drinking water distribution system and in the environment. The spill had occurred upstream from the West Virginia America Water intake, treatment, and distribution center. Some 300,000 residents were affected, losing their access to potable water. The continued plight of West Virginia living day-to-day with the contaminant's licorice odor resulted in Dietrich's team unraveling the odor threshold problem.

As the ban was lifted on drinking water use, Virginia Tech researchers gathered their data and they realized that West Virginians were still complaining of an odor in their homes and in the environment.

"Like for many contaminants in water, chemicals leave the water and enter the breathing air, so that inhalation becomes a route for human exposure as well as drinking the water," stated Daniel Gallagher (http://www.cee.vt.edu/people/gallagher.html), also a faculty member in Virginia Tech's Via Department of Civil and Environmental Engineering and a member of the research team.

The Virginia Tech researchers were able to pinpoint the concentrations of contaminants in the air that residents can detect because they have specialized equipment, uniquely available in the College of Engineering, but more commonly used in the food, beverage, and fragrance industries. Called olfactory gas chromatography, it allows the investigators to independently measure the concentrations and odors of the two isomers found in the 4-methylcyclohexane methanol.

This specific cyclohexane "consists of two isomers, a cis- and a trans- methylcyclohexane methanol.  The isomers have the same chemical formula but a very slight shape difference that for many isomers, can have enormous effects on the physical, chemical, and biological properties. Only the trans isomer has the characteristic licorice-like odor.  The cis isomer is significantly less odorous and has different descriptors," Dietrich explained.

Dietrich added that they determined the odor threshold concentration of the trans-isomer to be "exceedingly low", measured at 350 parts per trillion by volume in the air. This air odor threshold can be combined with a Henry's Law Constant that relates the concentration in air to estimate the corresponding concentration in water.  Based on an estimated Henry's Law Constant from TOXNET, this odor threshold in water concentration is about seven parts per billion-water.

This is more than a hundred times lower than the one part per million health guideline recommended by the Center for Disease Control. Thus, the odor of MCHM is readily detectable even when the water concentration water meets the health guideline level.

This relationship now needs to be further understood through additional data collection and research.

An "important implication of the findings," Dietrich said "is the critical need to independently measure the concentrations of the cis and the trans isomers, as was done in this study and is being done at the Virginia Tech labs. "The licorice odor will be proportional to the amount of the trans isomer, not the total amount of methylcyclohexane methanol. While there may be a tendency to measure 'total methylcyclohexane methanol', this could lead to misleading interpretations."

"The cutting edge research instrumentation and support available for student and faculty research is extensive," said lead graduate student Katherine Phetxumphou of Woodbridge, Va., who is supported on a Virginia Tech Graduate school fellowship and is a member of Virginia Tech's Water INTERface Interdisciplinary Graduate Education Program (http://interdisciplinary.graduateschool.vt.edu/?q=node/14).

"After our research protocol for human subjects received approval in February, we logged hundreds of hours of research that all boiled down to one number -- the odor threshold for trans methylcyclohexane methanol. It is amazing we accomplished so much so fast; we were committed to do this for the people of West Virginia and the research community," Dietrich said.

Of all the human senses, odor has been the most difficult to scientifically explain. Just 10 years ago, Linda Buck and Richard Axel were awarded the Nobel Prize in Medicine for being the first to decipher the genes that determine the sense of smell.

Dietrich is an expert on water quality and treatment, as well as its taste and odor assessment. Several years ago, the American Water Works Association and Research Foundation sponsored Dietrich to travel around the U.S. to educate utility staff and managers on how to use sensory analysis to detect changes in water quality. She is also a co-developer of three odor-testing methods for the daily monitoring of raw and untreated water. She is the current chair of the International Water Associations' Specialty Group for Off-Flavors in the Aquatic Environment; she travels internationally to speak and train on detecting tastes and odors in drinking water.

The College of Engineering (http://www.eng.vt.edu/) at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college's 6,000 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Related Links

This story can be found on the Virginia Tech News website: http://www.vtnews.vt.edu/articles/2014/03/032714-enginieering-chemicalsinair.html

Lynn A. Nystrom | VT News

Further reports about: concentration concentrations drinking isomers properties threshold

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>