Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming to shift heavy rainfall patterns in the UK

21.11.2012
It appears that it's not just us Brits who are fascinated with the UK weather.

A group of researchers from Germany has taken to investigating the potential changes in extreme rainfall patterns across the UK as a result of future global warming and has found that in some regions, the time of year when we see the heaviest rainfall is set to shift.

The study, published today, 21 November, in IOP Publishing's journal Environmental Research Letters, finds that between 2061 and 2100, the south-east of the country will likely experience its most extreme rainfall later in the year whereas the north-east will likely experience it earlier in the year.

The peak time of intense precipitation will shift from late summer to autumn in south-eastern regions and in north-western regions it will shift from December to November. There were no projected changes for other regions of the UK.

These shifts will coincide with times of the year when river catchments in those regions are at their maximum water capacity, meaning there would be an increased risk of flooding.

Lead author of the study, Anne Schindler, said: "In late autumn, the river catchments in the north-west reach their maximum capacity of water, as do the eastern catchments in winter. This is the time of the year when on average the most floods occur. Therefore, you can conclude that risk increases when the timing of the near field capacity and the probability for most extreme rainfall coincides."

The researchers, from the University of Giessen and GEOMAR Helmholtz Centre for Ocean Research Kiel, investigated the future changes using 12 climate model simulations for the periods 2021-2060 and 2061-2100, each forced with the Intergovernmental Panel on Climate Change's (IPCC) A1B scenario.

They also investigated whether the range of extreme rainfall throughout the year was set to get even greater with warming and did observe a projected increase in western regions of the UK; however, they make it clear that this finding is not robust and would need closer examination.

Schindler continued: "There are different mechanisms that influence extreme precipitation in the two regions we've highlighted. Extreme precipitation in the north-west is strongly influenced by westerly airflow and in the south-east the highest precipitation events are influenced by easterly flows from the North Sea.

"The shifts we have projected could be caused among other factors by changes in these large-scale circulation systems; however, this needs further investigation. For instance, we know there are deficits in the representation of rainfall in climate models and we do not know how the peak times vary from year to year without any man-made climate change."

The UK has a long history of monitoring rainfall and has a large number of rain gauges scattered across the country, providing a wealth of information and making it an ideal place to study.

Notes to Editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Officer, Michael Bishop:
Tel: 0117 930 1032
E-mail: Michael.bishop@iop.org
Changes in the annual cycle of heavy precipitation across the British Isles within the 21st century.

2. The published version of the paper 'Changes in the annual cycle of heavy precipitation across the British Isles within the 21st century' (Anne Schindler et al 2012 Environ. Res. Lett. 7 044029 ) will be freely available online from Wednesday 21 November.

Environmental Research Letters

3. Environmental Research Letters is an open access journal that covers all of environmental science, providing a coherent and integrated approach including research articles, perspectives and editorials.
IOP Publishing

4. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP.Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to http://ioppublishing.org/.
The Institute of Physics

5. The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policymakers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to www.iop.org

Michael Bishop | EurekAlert!
Further information:
http://www.iop.org

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>