Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming accelerates decomposition of old carbon in forest soils and subsequent release of CO2

12.06.2012
Soils store more than twice as much carbon as the atmosphere.
Upon microbial decomposition, carbon can be released again as CO2 into the atmosphere, but its residence time in the soils is largely unknown. In particular, the effect of warming on the decomposition of decade-old carbon, which makes up the majority of soil carbon stocks in temperate forest soils, is highly debated.

This question was addressed by an international study group, from the University of California, Irvine, CA, and Berkeley, CA, the Lawrence Berkeley National Laboratory, CA, and the Max Planck Institute for Biogeochemistry in Jena, Germany, using two independent approaches: In forest Free Air CO2 Enrichment (FACE) experiments in Wisconsin and in North Carolina, the local atmosphere was enriched with fossil-derived CO2 that has a markedly different 14C and 13C isotope signature from the background atmosphere.
That way the carbon fixed since the start of CO2 enrichment (more than 10 years ago) could be distinguished easily from carbon fixed afterward. The second approach used the history of radiocarbon (14C) in the atmosphere, which has declined since large-scale atmospheric weapons testing ended in the early 1960s, resulting in measurable differences in the 14C content of carbon fixed from one year to the next.

“Using these approaches, we first confirmed that about two-thirds of carbon stored in each soil was more than a decade old, consistent with other temperate and tropical estimates”, says Francesca M. Hopkins, lead author of the study and PhD student at the University of California, Irvine, USA.
To study how temperature affected the age structure of decomposing carbon, top soils from the two field sites were incubated at increasing temperatures. In the decomposition-derived CO2 flux, the proportion of decade-old carbon, distinguished based on its isotopic signature, did not change with warming. “Surprisingly, this suggests that temperature sensitivity of decade-old carbon is the same as that of the younger carbon” says Prof. Susan Trumbore, Max Planck Director in Jena and head of the international study group.

Since decade-old soil carbon represent a major portion of soil carbon stocks, its temperature sensitivity ultimately controls the magnitude of feedback between soil carbon and climate warming. “Our finding that decade-old carbon is vulnerable to warming suggests the potential for release of soil carbon to the atmosphere as CO2 as temperatures warm, which in turn would lead to more warming”, Trumbore points out. [EF]

Original Publication:
Warming accelerates decomposition of decades-old carbon in forest soils
Francesca M. Hopkins, Margaret S. Torn, Susan E. Trumbore
Proc. Nat. Acad. Sci. USA 2012
Epub ahead of print: http://www.pnas.org/content/early/recent

Contact:
Prof. Susan E. Trumbore PhD
Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
e-mail: trumbore@bgc-jena.mpg.de

Background Information:
The Max-Planck-Institute for Biogeochemistry, founded in 1997, is dedicated to the study of long-term interactions among the biosphere, atmosphere, geosphere and the oceans. The research aims of the Institute include:
- quantifying the role of these interactions in the control of the Earth’s climate in a time of increasing anthropogenic impact;
- developing a quantitative and predictive understanding of the regulation of processes in ecosystems and their attendant biogeochemical cycles in the face of climate change;

Wood plots (rings) in North Carolina, USA, that are fumigated with elevated concentrations of atmos-pheric CO2 of defined isotopic signatures. Photo: Yavor Parashkevov, Duke University

- and investigating feedback mechanisms at the Earth’s surface that involve vegetation, atmospheric composition and climate. For more information see www.bgc-jena.mpg.de.

Weitere Informationen:

http://www.bgc-jena.mpg.de
homepage of the institute

http://www.pnas.org/content/early/recent
Electronic publication (early edition) at Proc.Natl.Acad.Sci.USA

Dr. Eberhard Fritz | Max-Planck-Institut
Further information:
http://www.bgc-jena.mpg.de

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>