Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In vitro studies assess the optimal concentration of propolis as a radioprotector in future clinical applications

05.07.2012
A team of researchers from the University of Valencia, the Universitat Politècnica de València, the University Hospital La Fe and the Universitat Autònoma de Barcelona conducted in vitro studies of cytotoxicity (cellular affection) to assess the optimal concentration level of propolis in which this natural substance extracted from bee resin would offer the maximum protection against ionised radiation and not be toxic for blood cells.
According to the results of the research, this optimal concentration level is between 120-500 micrograms/mL. "Within this range can be found maximum protection against radiation-induced damage and the substance does not reveal neither a cytotoxicity nor a genotoxicity effect on non-irradiated human lymphocytes", says Alegria Montoro, head of the Laboratory of Biological Dosimetry at the University Hospital La Fe and lecturer of the Master in Radiological Protection in Radioactive and Nuclear Facilities offered by the UPV.

The conclusions of this study, which receives funding from the Spanish Nuclear Security Council (CSN), represent a starting point for future clinical applications using propolis. The results were published in the journal Food and Chemical Toxicology; in August a full revision of the study will be presented at the Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC12, which will be held in San Diego, California.

In the study, the team of researchers used four genetic biomarkers, including the mytotic index and the cell proliferation kinetics, with the aim of determining whether propolis has cytotoxic effects on cells. "Using these biomarkers makes it possible to discover how a substance affects cell division: a substance which is cytotoxic and modifies the cell division stage would do so by accelerating, slowing down or even stopping the process, and all three effects are negative", explains Alegria Montoro.

The other two biomarkers used are the study of the possible induction of chromosome alterations in non-irradiated cultures at different concentration levels and sister chromatid exchanges (SCEs), a genetic biomarker of exposure to chemical agents.

"With this study we already know the in vitro experimental level, the concentration of propolis to be used to make it act as a radiation protector agent, without being cyto/genotoxic for normal cells. This is the first step, a starting point for future clinical assays. The final objective is to develop capsules containing the adequate dosis of propolis, but many more hours of research are needed before we are able to do this", Alegria Montoro adds.

UAB lecturer Francesc Barquinero, currently on leave to work at the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) headquarters in Fontenay aux Roses, France, participated in the original planning of the study and its design, as well as the interpretation of the results and posterior contextualisation of other studies published.

In 2008, researchers at the Institute for Industrial, Radiophysical and Environmental Safety (ISIRyM) of the Universitat Politècnica de València and the University Hospital La Fe demonstrated that propolis can reduce by half the damage inflicted on chromosomes by ionised radiations, thus protecting the DNA from these effects. The new study is fundamental in discovering the range of concentrations in which this substance can have a toxic effect on non-irradiated cells.

Lauren Kelly Wickman | alfa
Further information:
http://www.ruvid.org

More articles from Studies and Analyses:

nachricht What and how much we eat might change our internal clocks and hormone responses
07.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Do horses copy humans?
30.10.2019 | Hochschule für Wirtschaft und Umwelt Nürtingen-Geislingen

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

With Mars methane mystery unsolved, curiosity serves scientists a new one: Oxygen

13.11.2019 | Physics and Astronomy

AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics

13.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>