Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UV light cuts spread of TB

18.03.2009
Ultraviolet lights could reduce the spread of tuberculosis in hospital wards and waiting rooms by 70%, according to a new study, published in PLoS Medicine today.

The study, which explored the transmission of tuberculosis (TB) from infected patients to guinea pigs, suggests that installing simple ultraviolet C (UVC) lights in hospitals could help reduce the transmission of TB, including drug-resistant strains.

Every year, over nine million people are infected with tuberculosis and nearly two million people die from the disease, according to the World Health Organisation. Infection rates are particularly high in places where vulnerable people are crowded together, such as hospitals, homeless shelters and prisons.

When a tuberculosis patient coughs, bacteria are sprayed into the air in tiny droplets, floating around the room and infecting other patients, visitors and healthcare staff. These bacteria can be killed by hanging a shielded UVC light from the ceiling with a fan to mix the air, say the researchers, from Imperial College London, the University of Leeds, Hospital Nacional Dos de Mayo, Lima, Perú and other international institutions.

UVC light kills tuberculosis bacteria, including drug-resistant strains, by damaging their DNA so they cannot infect people, grow or divide. It is already used at high intensity to disinfect empty ambulances and operating theatres.

Dr Rod Escombe, the study's principal investigator from the Wellcome Trust Centre for Clinical Tropical Medicine at Imperial College London, said: "When people are crowded together in a hospital waiting room, it may take just one cough to infect several vulnerable patients. Our previous research showed that opening windows in a room is a simple way to reduce the risk of tuberculosis transmission, but this is climate-dependent – you can't open the windows in the intensive care ward of a Siberian hospital for example."

"Thankfully, the rate of tuberculosis infection in countries like the UK is relatively low and people who are infected can be treated using antibiotics, which are readily available here. People are more likely to die from the disease in developing countries like Perú, because there are limited resources for isolating patients, diagnosing them quickly and starting effective treatment. Also, the prevalence of drug-resistant TB is much higher in the developing world. Preventing infection is much easier and cheaper than treating a patient with tuberculosis," added Dr Escombe.

Plans are already underway to install upper room UV lights in the chest clinic at St Mary's Hospital, part of the Imperial College Healthcare NHS Trust, which will be the first hospital to have them in the UK.

Introducing UVC lights could be a relatively low-cost measure, say the researchers. Currently, a typical UVC ceiling light costs around US$350 and replacement bulbs cost from US$25. The researchers are now working to develop more affordable US$100 units.

The impact of UV lights is greatest when combined with careful management of the air flow on the wards, as Dr Cath Noakes from the University of Leeds' Faculty of Engineering explains: "The lights must be set high enough to ensure patients and health workers are not overexposed, but if the lights only treat air at that level, there will be little benefit. To be most effective, ventilation systems need to create a constant flow of treated air down to patient level, and potentially infected air up towards the lights."

To reach their conclusions, scientists hung UVC lights in a hospital ward in Lima, Perú where 69 patients with HIV and TB were being treated. The researchers pumped air from the ward up to a guinea pig enclosure on the roof of the hospital for 535 consecutive days. The guinea pigs were split into three groups of approximately 150: the first group received air exposed to the UV lights in the ward, the second group received ward air treated with negative ionisers, and the third control group was given untreated air straight from the ward. The guinea pigs were given skin tests for tuberculosis once a month.

By the end of the experiment, 35% of the control group were infected with TB, compared to 14% of the ionised air group and 9.5% of the UVC group. 8.6% of the control group developed the active form of the disease after being infected with TB, compared to 4.3% of the ionised air group and 3.6% of the UVC group.

Lucy Goodchild | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Studies and Analyses:

nachricht How to design city streets more fairly
18.05.2020 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Insects: Largest study to date confirms declines on land, but finds recoveries in freshwater – Highly variable trends
24.04.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

German-British Research project for even more climate protection in the rail industry

28.05.2020 | Transportation and Logistics

A special elemental magic

28.05.2020 | Physics and Astronomy

Skoltech scientists get a sneak peek of a key process in battery 'life'

28.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>