Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ursano to Lead Largest Ever Study of Suicide in the Military

20.07.2009
Robert J. Ursano, M.D., director of the Center for the Study of Traumatic Stress and chairman of the Uniformed Services University of the Health Sciences (USU) Department of Psychiatry in Bethesda, Md., will lead an interdisciplinary team of four research institutions to carry out a National Institute of Mental Health study – the largest study of suicide and mental health among military personnel ever undertaken, with $50 million in funding from the U.S. Army.

The study is a direct response to the Army’s request to NIMH to enlist the most promising scientific approaches for addressing the rising suicide rate among soldiers. Suicide rates among Army personnel have risen substantially since the beginning of the current conflicts in Iraq and Afghanistan despite major surveillance and intervention efforts introduced by the Army to prevent suicides over this period.

Four institutions will collaboratively conduct an epidemiologic study of mental health, psychologic resilience, suicide risk, suicide-related behaviors, and suicide deaths in the U.S. Army. The consortium brings together research teams that are internationally known for their expertise and experience in research on military health, health and behavior surveys, epidemiology, and suicide, including genetic and neurobiological factors involved in suicidal behavior. Ursano will serve as project director. Consortium principal investigators are Steven Heeringa, Ph.D., at the University of Michigan, Ann Arbor; Ronald Kessler, Ph.D., Harvard Medical School, Cambridge, Mass.; and John Mann, M.D., at Columbia University, New York City.

Dr. Ursano is a world-renowned expert in mental health and trauma and will work closely with the principal investigators as well as NIMH scientists and Army project officers. The Center for the Study of Traumatic Stress, a partnering center of the Defense Centers of Excellence for PTSD and TBI, conducts research and offers education, consultation and training on preparing for, and responding to, the psychological effects and health consequences of traumatic events.

The study will use several strategies to generate information on risk and protective factors:

- The Army already has a rich archive of data on its personnel. Study investigators will work to consolidate information from different databases and use this resource to identify possible suicide risk and protective factors.

- Investigators will undertake a retrospective case-control study in which individual soldiers who have attempted suicide with or without fatal outcomes (cases) will be matched with individuals with similar demographic characteristics (controls). Comparison of information gathered on cases and controls should provide clues to risk and protective factors.

- A survey for which 90,000 active Army personnel representative of the entire Army will be contacted will provide information on the prevalence of suicide-related behavior and risk and protective factors. When possible, saliva and blood samples will be collected for genetic and neurobiologic studies.

- All 80,000 to 120,000 recruits who enter the Army in each of the first three years of the study will be asked to participate in a survey similar to the all-Army survey above.

This research will encompass active duty Army personnel across all phases of service, including members of the National Guard and Reserves. Soldiers’ confidentiality will be protected as investigators explore the nature of risk and protective factors and the timing of events that could influence risk, such as time since enlistment and deployment status and history.

Although planned to continue for 5 years, the study is designed to be able to identify quickly potential risk factors that can inform the continuing research project and the Army’s ongoing efforts to prevent suicide among its personnel. Identification of risk and protective factors—including existing prevention strategies that show effectiveness in reducing suicide risk—is a means to the end of developing evidence-based interventions that are readily applicable in a military context and can be put into action quickly to reverse the increase in suicide rates.

Located on the grounds of Bethesda’s National Naval Medical Center and across from the National Institutes of Health, USU is the nation’s federal school of medicine and graduate school of nursing. The university educates health care professionals dedicated to career service in the Department of Defense and the U.S. Public Health Service. Students are active-duty uniformed officers in the Army, Navy, Air Force and Public Health Service who are being educated to deal with wartime casualties, natural disasters, emerging infectious diseases, and other public health emergencies. Of the university’s nearly 4,400 physician alumni and more than 400 advanced practice nurses, the vast majority serve on active duty and are supporting operations in Iraq, Afghanistan, and elsewhere, offering their leadership and expertise. The University also has graduated more than 600 public health professionals.

For more information about USU and its programs, visit www.usuhs.mil.

Ken Frager | Newswise Science News
Further information:
http://www.usuhs.mil

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>