Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undergrad’s Work Details Protein’s Role in Neurological Disorders

15.02.2012
Student and Prof Study Suspected Link to Hyper-Excitability Factors in Epilepsy, Autism and More

A UT Dallas undergraduate’s research is revealing new information about a key protein’s role in the development of epilepsy, autism and other neurological disorders. This work could one day lead to new treatments for the conditions.

Senior neuroscience student Francisco Garcia has worked closely with Dr. Marco Atzori, associate professor in the School of Behavioral and Brain Sciences (BBS), on several papers that outline their findings about interleukin 6 (IL-6) and hyper-excitability. An article on the project is slated for publication in Biological Psychiatry later this year.

Scientists know that stress elevates the levels of pro-inflammatory cytokines (signaling molecules used in intercellular communication) and promotes hyper-excitable conditions within the central nervous system. This hyper-excitability is thought to be a factor in epilepsy, autism and anxiety disorders.

“This finding has the potential to lead to eventual new treatments for epilepsy, anxiety disorders or autism.”

Franciso Garcia,
senior neuroscience student
Garcia and Atzori hypothesized that the protein IL-6 acutely and directly induces hyper-excitability by altering the balance between excitation and inhibition within synaptic communication. In other words, IL-6 is not just present when hyper-excitability occurs in the nervous system. It may actually cause it in some circumstances, Garcia said.

The UT Dallas research team administered IL-6 to rat brain tissue and monitored its synaptic excitability. The brain tissue exhibited higher than normal excitability in their synapses, a symptom that may lead to misfiring of signals in epilepsy and other conditions.

The researchers then injected sgp130 -a novel drug that acts as an IL-6 blocker- into the laboratory animals’ brains. The substance limited excitability and appeared to prevent the conditions that lead to related neurological and psychiatric disorders, Garcia said.

“This finding has the potential to lead to eventual new treatments for epilepsy, anxiety disorders or autism,” Garcia said.

The next stage of his research will involve looking at how IL-6 might affect development of other types of neurological problems. Human trials could follow sometime in the future.

Garcia is a native of Mexico, and he plans to pursue his master’s degree in neuroscience at UT Dallas after finishing his undergraduate studies. He credits the BBS faculty with allowing him to participate in laboratory experiments and expand his research skills.

“The UT Dallas faculty members have been great about giving me the opportunity to learn the techniques of a lab researcher,” he said. “It’s been a great experience to work as an undergraduate with such highly respected scientists as Dr. Atzori and Dr. Michael Kilgard.”

Atzori also praised Garcia’s efforts.

“Francisco has been an intelligent, hard-working and experimentally gifted student who contributed way more than the average undergraduate to the projects of the laboratory,” Atzori said. “I am proud that a fine piece of research with great potential for research and clinical applications has been carried out thanks to his enthusiasm and dedication. Francisco’s work in my laboratory is an example of the achievements possible when an institution like UT Dallas invests in and nurtures its research environment.”

Media Contact:
Emily Martinez, UT Dallas, (972) 883-4335, emily.martinez@utdallas.edu
or the Office of Media Relations, UT Dallas, (972) 883-2155, newscenter@utdallas.edu

Emily Martinez | EurekAlert!
Further information:
http://www.utdallas.edu

More articles from Studies and Analyses:

nachricht Drought hits rivers first and more strongly than agriculture
06.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Enabling a plastic-free microplastic hunt: "Rocket" improves detection of very small particles

22.10.2018 | Ecology, The Environment and Conservation

Superflares from young red dwarf stars imperil planets

22.10.2018 | Physics and Astronomy

Accurate evaluation of chondral injuries by near infrared spectroscopy

22.10.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>