Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC researchers have immune cells running in circles

03.11.2009
University of Illinois at Chicago College of Medicine researchers have identified the important role a protein plays in the body's first line of defense in directing immune cells called neutrophils toward the site of infection or injury.

Their results are described online in the Proceedings of the National Academy of Sciences.

Neutrophils are white blood cells that are activated by chemical cues to move quickly to the site of injury or infection, where they ingest bacteria. When alerted to infection, neutrophils move by changing shape, developing a distinct front and back, sending a "foot" out in front of them, and "crawling" toward the site of infection.

Hoping to better understand the role of a protein called p55 or MPPI that they had previously identified as highly expressed in neutrophils, the UIC researchers bred the first mice that completely lacked this protein.

The "knockout" mice had marked difficulty fighting infection and were slow to heal, according to Athar Chishti, professor of pharmacology and principal investigator in the study.

Instead of forming a single large pseudopod, or foot-like extension, in the direction of the infection, neutrophils from the knockout mice formed a number of small extensions all around the cell, said Chishti.

Neutrophils lacking p55 would follow a meandering path, wandering in circles. "It was as though the neutrophils had lost their sense of direction," said Brendan Quinn, graduate assistant researcher in pharmacology and first author of the study.

Neutrophils are part of the body's innate immunity and its first line of defense, so the speed of the response is key to healing. "The neutrophils eventually get to the infection site, but they would get there late," Quinn said.

The researchers also established how p55 wields its effect on neutrophils, demonstrating that although the cell's ability to reorganize its actin skeleton to produce pseudopods was undisturbed, a signaling lipid known to be important in establishing polarity, called PIP3, failed to localize on the leading edge of the p55-null neutrophils, instead diffusing throughout the cell.

Further, the p55-null neutrophils had a marked reduced activation of another important signaling protein, Akt, which is believed to play an important role in many cancers.

"This study offers clues to an important cell signaling pathway that is critical to cellular polarization processes in neutrophils and many other cells," said Chishti.

Emily J. Welch, Anthony C. Kim, Anwar A. Khan and Shafi M Kuchay of the department of pharmacology at the UIC College of Medicine and Mary A. Lokuta and Anna Huttenlocher of the departments of pediatrics and pharmacology at the University of Wisconsin, Madison, also contributed to the study. The work was funded by grants from the National Institutes of Health and the Department of Defense Neurofibromatosis Research Program Career Development Award.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Interactive software tool makes complex mold design simple

16.08.2018 | Information Technology

Study tracks inner workings of the brain with new biosensor

16.08.2018 | Health and Medicine

Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project

16.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>