Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB study finds climate change is causing modifications to marine life behavior

05.08.2013
Research conducted by a National Center for Ecological Analysis and Synthesis Working Group

Oceans cover 71 percent of the Earth's surface, yet our knowledge of the impact of climate change on marine habitats is a mere drop in the proverbial ocean compared to terrestrial systems. An international team of scientists set out to change that by conducting a global meta-analysis of climate change impacts on marine systems.

Counter to previous thinking, marine species are shifting their geographic distribution toward the poles and doing so much faster than their land-based counterparts. The findings were published in Nature Climate Change.

The three-year study, conducted by a working group of UC Santa Barbara's National Center for Ecological Analysis and Synthesis (NCEAS) and funded by the National Science Foundation, shows that warming oceans are causing marine species to change breeding, feeding, and migration timing as well as shift where they live. Widespread systemic shifts in measures such as distribution of species and phenology — the timing of nature's calendar — are on a scale comparable to or greater than those observed on land.

"The leading edge or front-line of marine species distributions is moving toward the poles at an average of 72 kilometers (about 45 miles) per decade — considerably faster than terrestrial species, which are moving poleward at an average of 6 kilometers (about 4 miles) per decade," said lead author Elvira Poloczanska, a research scientist with Australia's national science agency, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Marine and Atmospheric Research in Brisbane. "And this is occurring even though sea surface temperatures are warming three times slower than land temperatures."

The report, which involved scientists from 17 institutions, including NCEAS associates Carrie Kappel and Ben Halpern and former NCEAS postdoctoral associates Mary O'Connor, Lauren Buckley, and Camille Parmesan, forms part of the Fifth Assessment Report of the United Nations Intergovernmental Panel for Climate Change (IPCC). The Geneva-based IPCC assesses scientific, technical, and socioeconomic information concerning climate change, its potential effects, and options for adaptation and mitigation.

"The effects of climate change on marine species have not been a major focus of past IPCC reports because no one had done the work to pull together all the disparate observations from around the world," said Kappel. "This study provides a solid basis for including marine impacts in the latest global accounting of how climate change is affecting our world."

Unlike previous climate change assessments, which relied heavily on terrestrial data to estimate marine impacts, the NCEAS working group scientists gathered from seven countries to assemble a large marine-only database of 1,735 changes in marine life from the global peer-reviewed literature. The biological changes were documented from time series, with an average length of 40 years of observation.

"Here's a totally different system with its own unique set of complexities and subtleties," said Camille Parmesan, professor in the Department of Integrative Biology at University of Texas at Austin. "Yet the overall impacts of recent climate change remain the same: an overwhelming response of species shifting where and when they live in an attempt to track a shifting climate.

"This is the first comprehensive documentation of what is happening in our marine systems in relation to climate change," added Parmesan. "What it reveals is that the changes occurring on land are being matched by the oceans. And far from being a buffer and displaying more minor changes, what we're seeing is a far stronger response from the oceans." Parmesan has been active in IPCC since 1997, and in her capacity as a lead author, she shared in the award of the 2007 Nobel Peace Prize to IPCC.

The research revealed telltale traces that collectively build the case for climate change causing modifications in the ocean. These fingerprints of climate change include movements of species toward the poles as ocean temperatures rise, with an average displacement up to ten times that for terrestrial species. Phytoplankton, zooplankton, and bony fish showed the largest shifts.

Researchers also found that the timing of spring events in the oceans had advanced by more than four days, nearly twice the figure for land. The strength of response varied among species, but again, the research showed the greatest response — up to 11 days in advancement — occurred in invertebrate zooplankton and larval bony fish.

Multiple lines of evidence supported the hypothesis that climate change is the primary driver behind the observed changes: for example, opposing responses in warm-water and cold-water species within a community and similar responses from discrete populations at the same range edge. In total, 81 percent of all observations, whether for distribution, phenology, community composition, abundance, or demography, across different populations and ocean basins were consistent with the expected impacts of climate change.

Julie Cohen | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>