Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M study uncovers key to how 'triggering event' in cancer occurs

02.11.2009
Researchers link hormone to creation of gene fusion in prostate cancer

Researchers at the University of Michigan Comprehensive Cancer Center have discovered what leads to two genes fusing together, a phenomenon that has been shown to cause prostate cancer to develop.

The study found that pieces of chromosome relocate near each other after exposure to the hormone androgen. This sets the scene for the gene fusion to occur. The finding is reported online Oct. 29 in Science Express.

"This work shows the origin of how the gene fusion is actually created and perhaps the origin of prostate cancer itself. This is a triggering event for the genesis of prostate cancer," says study author Arul Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology and S.P. Hicks Professor of Pathology at the U-M Medical School. Chinnaiyan is also a Howard Hughes Medical Institute investigator.

Chinnaiyan and his team identified in 2005 a prostate-specific gene called TMPRSS2 that fuses with the gene ERG, which is known to play a role in prostate cancer. Their earlier research has shown that this gene fusion acts as an "on switch" to trigger prostate cancer. In the current study, the researchers focused on what causes the gene fusion to occur.

The researchers took prostate cancer cells that did not reflect the gene fusion but that were sensitive to androgen, a male hormone known to play a role in some prostate cancers. They exposed the cells to androgen and found that two pieces of chromosome that are normally far apart are relocated near each other.

Next, the researchers applied radiation to the androgen-stimulated cells. This stress or insult to the cells – designed to induce chromosomal breaks – led to the gene fusion occurring.

"We thought the gene fusions occurred as a chance event, but it's not. Chromosomes can actually be induced in three-dimensional space to be close to each other. Then when an insult to the DNA occurs, the fusion happens," says lead study author Ram-Shankar Mani, Ph.D., a research fellow in pathology at the U-M Medical School.

The researchers believe the findings could have implications for gene fusions that occur in other cancer types. By understanding how gene fusions occur, the researchers suggest that screening tools or prevention strategies could potentially be developed.

Prostate cancer statistics: 192,280 Americans will be diagnosed with prostate cancer this year and 27,360 will die from the disease, according to the American Cancer Society

Additional authors: Scott A. Tomlins, Kaitlin Callahan, Aparna Ghosh, Mukesh N. Nyati, Sooryanarayana Varambally and Nallasivam Palanisamy, all from U-M

Funding: National Institutes of Health, U.S. Department of Defense

Disclosure: The University of Michigan has filed for a patent on the detection of gene fusions in prostate cancer, on which Tomlins and Chinnaiyan are co-inventors. The diagnostic field of use has been licensed to Gen-Probe Inc. Chinnaiyan also has a sponsored research agreement with Gen-Probe. Gen-Probe has had no role in the design or experimentation of this study, nor has it participated in the writing of the manuscript.

Reference: Science Express, 10.1126/science.1178124

Resources:
U-M Cancer AnswerLine, 800-865-1125
Michigan Center for Translational Pathology, www.med.umich.edu/mctp
U-M Comprehensive Cancer Center, www.mcancer.org

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

Low bandwidth? Use more colors at once

17.08.2018 | Information Technology

Protecting the power grid: Advanced plasma switch for more efficient transmission

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>