Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Typhoid fever bacteria collect on gallstones to perpetuate disease

24.02.2010
A new study suggests that the bacteria that cause typhoid fever collect in tiny but persistent communities on gallstones, making the infection particularly hard to fight in so-called “carriers” – people who have the disease but show no symptoms.

Humans who harbor these bacterial communities in their gallbladders, even without symptoms, are able to infect others with active typhoid fever, especially in developing areas of the world with poor sanitation. The disease is transmitted through fecal-oral contact, such as through poor hand-washing by people who prepare food.

Typhoid fever is rare in the United States, but it affects an estimated 22 million people worldwide, causing symptoms that include a high fever, headache, weakness and fatigue, and abdominal pain. It leads to hundreds of thousands of deaths each year.

Scientists and physicians have known for decades that these bacteria, Salmonella enterica serovar Typhi, accumulate in the gallbladder. In fact, the most widely accepted treatment of chronic typhoid infection is removal of the gallbladder.

“We’re trying to get to the heart of why this is. Why does Salmonella sit in a pool of highly concentrated detergent, which is what bile is, but not die?” said John Gunn, professor of molecular virology, immunology and medical genetics at Ohio State University and senior author of the study. “It’s got to survive in some way, and a good way to survive is by forming a biofilm.”

Biofilms – in this case, the collection of bacteria on gallstones – typically do not respond well to antibiotics or the human immune response. But now that the biofilms themselves have been discovered in association with asymptomatic typhoid infection, they present a potential treatment alternative to expensive and invasive gallbladder removal, Gunn said.

Specifically, targeting a sugar polymer on the bacterial surface that promotes development of the biofilm might be a strategy to prevent biofilm formation in the first place, he said.

The research appears this week in the online early edition of the Proceedings of the National Academy of Sciences.

Gunn and colleagues observed this biofilm formation in mice infected with a strain of Salmonella bacteria similar to the strain that causes typhoid fever in humans. The scientists also detected these biofilms on gallstones in about 5 percent of humans in a Mexican hospital who had their gallbladders removed because of complications from gallstones. Typhoid fever is widespread in Mexico.

“The mouse data coupled with the human data suggest strongly that biofilms lay a foundation that allows for establishment and maintenance of chronic typhoid infection,” said Gunn, also a vice director of Ohio State’s Center for Microbial Interface Biology.

And the researchers suspect biofilms are at play in the gallbladder’s association with typhoid fever because in most cases, the only way to treat a biofilm-related infection is to remove whatever the biofilm has attached to from the body. For example, infections that form on catheters, implanted joints or artificial heart valves typically result from biofilms, and the only way to clear the infection is to remove those devices.

“Information in our lab and in the literature that gallstones were associated with how people became carriers of typhoid bacteria, that organisms were confined to one site, and that antibiotics are ineffective so one has to remove the gallbladder for successful therapy – it all fit with biofilm-related disease,” Gunn said.

In the study, the researchers fed mice either normal food or a high-cholesterol diet for eight weeks, intending to induce gallstones in the animals on the fatty diet. The scientists then gave these mice a type of Salmonella bacteria designed to mimic a chronic human typhoid infection without causing actual illness in the mice. A control group of mice received no bacteria.

The number of bacteria harbored in the gallbladders of mice with gallstones increased over time, becoming abundant within 21 days, and was significantly higher than bacteria in mice that did not have any stones. No bacteria were detected in mice that weren’t given the infection, even if they had gallstones.

In the infected mice, the Salmonella bacteria also could be seen in the gallbladder lining and in bile as well as on the surface of the gallstones. The gallstones were the focus of this study because Gunn’s lab has determined in previous experiments that Salmonellae are attracted to cholesterol-coated surfaces.

There are two common types of gallstones – cholesterol stones and brown or black stones composed primarily of calcium bilirubinate, which can be found in bile. Gunn’s test-tube research to date had suggested that Salmonella Typhi bacteria bind particularly well to cholesterol gallstones to form biofilms, and this current study supported that.

Three weeks after infection, biofilms covered about 50 percent of the surfaces of the gallstones removed from the infected mice.

“What we think is that having gallstones makes you more susceptible to becoming a carrier because it provides that environment for Salmonella to bind to the surface, form a biofilm and establish infection,” Gunn said. “Whether that happens 100 percent of the time, nobody knows.”

In a second component of the mouse study, the researchers tested fresh fecal pellets from infected mice to test the association between gallstone biofilms and transmission of a typhoid-like infection via feces, a phenomenon called “shedding.” The mice with gallstones shed three times more bacteria than did infected mice without gallstones.

“The mice that had gallstones and were infected with bacteria had a much higher rate of shedding, meaning those bacteria were released, probably because they had more bacteria in the gallbladder itself,” Gunn said.

The mouse data not only supported Gunn’s hypothesis that gallstones present at least one surface on which Salmonella biofilms form and maintain the carrier state of typhoid fever. The researchers also realized they had developed a new mouse model for further study of asymptomatic typhoid carriage.

Gunn and colleagues also obtained data from humans at a hospital in Mexico whose gallbladders were removed as a treatment for gallstone complications. Though none of the patients had ever shown symptoms for typhoid fever, 5 percent of them ended up being carriers of Salmonella Typhi bacteria biofilms on their gallstones. In the single patient determined to be a typhoid carrier who didn’t have biofilm on his gallstones, the stones were dark in color, suggesting they were likely composed of something other than cholesterol, Gunn said.

This ability of a single individual to harbor latent bacteria elsewhere in the gallbladder leads Gunn and colleagues to suspect that biofilms can form elsewhere in the gallbladder – perhaps in its lining or persisting within specific cells of the gallbladder wall. Gunn’s lab is exploring those possibilities.

This work is supported by the National Institutes of Health and a graduate education fellowship from Ohio State’s Public Health Preparedness for Infectious Diseases initiative.

Co-authors of the study are Robert Crawford of the Center for Microbial Interface Biology and Department of Molecular Virology, Immunology and Medical Genetics at Ohio State; Roberto Rosales-Reyes and María de la Luz Ramírez-Aguilar of the Universidad Nacional Autonoma de Mexico; Oscar Chapa-Azuela of Hospital General de Mexico; and Celia Alpuche-Aranda of the Instituto Nacional de Referencia Epidemiologica in Mexico.

Contact: John Gunn, (614) 292-6036; gunn.43@osu.edu
Written by Emily Caldwell, (614) 292-8310; caldwell.151@osu.edu

John Gunn | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>