Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The true raw material footprint of nations

03.09.2013
The amount of raw materials needed to sustain the economies of developed countries is significantly greater than presently used indicators suggest, a new Australian study has revealed.

Using a new modelling tool and more comprehensive indicators, researchers were able to map the flow of raw materials across the world economy with unprecedented accuracy to determine the true "material footprint" of 186 countries over a two-decade period (from 1990 to 2008).

The study, involving researchers from the University of New South Wales, CSIRO, the University of Sydney, and the University of California, Santa Barbara, was published today in the US journal Proceedings of the National Academy of Sciences. It reveals that the decoupling of natural resources from economic growth has been exaggerated.

The results confirm that pressures on raw materials do not necessarily decline as affluence grows and demonstrates the need for policy-makers to consider new accounting methods that more accurately track resource consumption.

"Humanity is using raw materials at a level never seen before with far-reaching environmental impacts on biodiversity, land use, climate and water," says lead author Tommy Wiedmann, Associate Professor of Sustainability Research at the UNSW School of Civil and Environmental Engineering. "By relying on current indicators, governments are not able to see the true extent of resource consumption."

"Now more than ever, developed countries are relying on international trade to acquire their natural resources, but our research shows this dependence far exceeds the actual physical quantity of traded goods," says Wiedmann, who worked at CSIRO Ecosystem Sciences when the research was undertaken.

In 2008, the total amount of raw materials extracted globally was 70 billion metric tons – 10 billion tons of which were physically traded. However, the results show that three times as many resources (41% or 29 billion tons) were used just to enable the processing and export of these materials.

The researchers say that because these resources never leave their country of origin, they are not adequately captured by current reporting methods. They have used a new indicator they call the "material footprint" to more accurately account for these 'lost' resources and have developed tools that could assist policy-makers in future.

Economy-wide accounting metrics (such as Domestic Material Consumption or DMC) currently used by certain governments and intergovernmental organisations, including the OECD, the European Union and the UN Environment Programme, only account for the volume of raw materials extracted and used domestically, and the volume physically traded.

These indicators suggest resource-use in wealthy nations has increased at a slower rate than economic growth – something known as relative decoupling – and that other countries have actually seen their consumption decrease over the last 20 years – something known as absolute decoupling. (See figures).

Decoupling of raw material usage from economic growth is considered one of the major goals en route to achieving sustainable development and a low-carbon economy.

But the study authors say when their "material footprint" indicators are factored in these achievements in decoupling are smaller than reported and often non-existent.

The study relates to the following resources: metal ores, biomass, fossil fuels and construction minerals.

Selected country findings:

In 2008 China had by far the largest material footprint (MF) in absolute values (16.3 billion tons), twice as large as that of the US and four times that of Japan and India. Sixty per cent of China's MF consists of construction minerals, reflecting its rapid industrialisation and urbanisation over the last 20 years.

Australia had the highest material footprint per capita (about 35 tons per person), but because it is a prolific exporter of resources, it appears to have a relative decoupling. Other developed economies (USA, Japan, UK) show similar levels at around 25 tons per person.

Lower material standard of living and lower average level of consumption in many developing countries is reflected in a footprint below 15 tons per person, with India at the lower end at 3.7 tons per person.

In absolute values, the US is by far the largest importer of primary resources embodied in trade and China the largest exporter. The largest per-capita exporters of embodied primary materials – in particular metal ores – are Australia and Chile.

All industrialised nations show the same typical picture over time: as GDP grew over the last two decades there appeared to be a relative decoupling of resource use as indicated by DMC (even absolute decoupling for the UK). However, when measured by the material footprint indicator, resource use has grown in parallel to GDP with no signs of decoupling. This is true for the USA, UK, Japan, EU27 and OECD.

South Africa was the only country shown to have an absolute decoupling using the MF indicator.

Media Contact:

Associate Professor Tommy Wiedmann
+61 466 012 214
t.wiedmann@unsw.edu.au
Myles Gough, UNSW Media Office
+61 2 9385 1933
myles.gough@unsw.edu.au

Tommy Wiedmann | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>