Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transportation Energy Futures Study Reveals Potential for Deep Cuts to Petroleum Use and Carbon Emissions

20.03.2013
Collaborative NREL and ANL project reveals opportunities for 80% reductions by 2050
The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Argonne National Laboratory (ANL) today announced the release of the Transportation Energy Futures (TEF) study, an assessment of avenues to reach deep cuts in petroleum use and greenhouse gas (GHG) emissions in the transportation sector.

“Transportation is an engine of our economic strength, but it also represents a key challenge for the future of U.S. energy use,” NREL Senior Analyst Austin Brown said. “Transportation accounts for 71 percent of total U.S. petroleum consumption and 33 percent of our nation's total carbon emissions. It presents significant opportunities to cut oil dependence while taking a bite out of greenhouse gas emissions.”

The study revealed strategies to potentially reduce petroleum use and GHG emissions in the transportation sector by more than 80 percent by 2050. However, each of these opportunities faces significant challenges.

The TEF study also confirmed that there is no "silver bullet" for decreasing carbon emissions and petroleum use in transportation. Instead, deep reductions would involve an inclusive approach, combining strategies to:
Increase fuel economy for all types of vehicles
Reduce use of transportation while providing comparable service
Expand use of low-carbon fuels, including biofuels, as well as electricity and hydrogen

“The finding that there are many options increases our confidence that a clean transportation solution is possible in the long term,” Brown said.

The purpose of the TEF study was to address critical questions and inform domestic decisions about transportation energy strategies by identifying possible paths to a low-carbon, low-petroleum future for transportation, as well as the barriers that may block those paths. It can help inform decisions about investments in transportation energy research, and can also help policymakers if they choose to expand the role of advanced transportation technologies and systems. The study focuses on identifying opportunities related to energy efficiency and renewable energy in transportation.

Three major strategies were explored in the study: reduction of energy use through efficiency and demand management; increased use of electricity and hydrogen from renewable energy; and expanded use of biofuels.

It was found that energy efficiency improvements and measures to reduce transportation demand, without compromising service, have the potential to stop – or reverse – the growth in national transportation energy use, making it possible for competitive renewable energy supplies to provide an increasing share of energy.

Focus areas of the nine reports that are part of the TEF study include:

Light Duty Vehicles (personal cars and light trucks)

Deployment pathways issues including the development of, transition to, and challenges to advanced technology.
Non-cost barriers such as range anxiety, refueling availability, technology reliability, and lack of consumer familiarity.

Non-Light-Duty Vehicles (trucks, rail, aircraft, and other modes)
Opportunities to improve non-light-duty vehicle efficiency, including that of medium- and heavy-duty trucks, off-road vehicles and equipment, aircraft, marine vessels, and railways.
Opportunities for switching modes of transporting freight, such as moving freight from trucks to rail and ships.

Fuels

Infrastructure expansion required for deployment of low-GHG fuels, including electricity, biofuels, hydrogen, and natural gas.
Balance of biomass resource demand and supply, including allocations for various transportation fuels, electric generation, and other applications.

Transportation Demand
Opportunities to save energy and abate GHG emissions through community development and urban planning.
Trip reduction through mass transit, tele-working, tele-shopping, carpooling, and efficient driving.
Freight demand patterns, including trends in operational needs and projections of future use levels.

The TEF project was funded by DOE’s Office of Energy Efficiency and Renewable Energy. The study’s steering committee included the Environmental Protection Agency, the Department of Transportation, academic researchers, and industry associations. Additional input was provided by transportation consultants from Cambridge Systematics, Inc. For more information, visit the TEF Website.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by The Alliance for Sustainable Energy, LLC.

David Glickson | EurekAlert!
Further information:
http://www.nrel.gov

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>