Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tolerance to malaria by means of iron control

15.11.2012
New mechanism that confers tolerance to malaria now revealed

Malaria is a life-threatening condition that exposes approximately half of the world's population to the risk of developing a severe and often lethal form of disease.

In a study published in the latest issue of the journal Cell Host & Microbe*, Miguel Soares and his team at Instituto Gulbenkian de Ciência (IGC), Portugal, discovered that the development of severe forms of malaria can be prevented by a simple mechanism that controls the accumulation of iron in tissues of the infected host.

They found that expression of a gene that neutralizes iron inside cells, named H Ferritin, reduces oxidative stress preventing tissue damage and death of the infected host. This protective mechanism provides a new therapeutic strategy against malaria.

Malaria is the disease caused by infection with the parasite Plasmodium through the bites of infected mosquitoes. Infected individuals activate a series of defence mechanisms that aim at eliminating the parasite. However, this is not totally efficient in terms of avoiding severe forms of the disease and eventually death. There is another defence strategy that provides disease tolerance to malaria, reducing disease severity without targeting the parasite, as recently highlighted by Miguel Soares and collaborators in the journal Science**. The study now published in the journal Cell Host & Microbe* shows that this defence strategy acts via the regulation of iron metabolism in the infected host.

It was known that restricting iron availability to pathogens can reduce their virulence, that is, their capacity to cause disease. However, this defence strategy has a price, namely the accumulation of toxic iron in tissues and organs of the infected host. This can lead to tissue damage, enhancing rather than preventing disease severity. In the experimental work now conducted Raffaella Gozzelino, a senior researcher in Miguel Soares' laboratory, demonstrates that the infected host overcomes this problem by inducing the expression of H-Ferritin, which detoxifies iron. The protective effect of H-Ferritin prevents the development of severe and often lethal forms of malaria in mice.

The researchers also investigated if there is a correlation between the severity of malaria and the expression of ferritin in humans. Together with Bruno Bezerril Andrade (currently at the National Institute of Allergy and Infectious Diseases, NIH, USA), Nivea Luz and Manoel Barral-Netto (at Fundação Oswaldo Cruz and Faculdade de Medicina, Universidade Federal da Bahia, Brazil) they analyzed samples from individuals infected with Plasmodium in Rondônia, a state in the north-western part of Brazil. Their results showed that, among the infected individuals, those with higher levels of ferritin presented reduced tissue damage. Together with the experimental data obtained in mice, these observations reveal that ferritin confers protection against malaria, without interfering directly with the parasite causing the disease, that is, that ferritin confers disease tolerance to malaria.

Miguel Soares says: 'Our work suggests that individuals that express lower levels of Ferritin and hence are not so efficient at sequestering toxic iron in their tissues might be at a higher risk of developing severe forms of malaria. Furthermore, our study also supports a theory that explains how protection against malaria, as well as other infectious diseases, can operate without targeting directly the causative agent of disease, namely Plasmodium. Instead, this defence strategy works by protecting cells, tissue and organs in the infected host from dysfunction, thus limiting the severity of disease.'

This study opens the way to new therapeutics that could confer tolerance to malaria.

This research was carried out at the IGC in collaboration with researchers from the National Institutes of Health (NIH), USA, Fundação Oswaldo Cruz (FIOCRUZ), Brazil, Faculdade de Medicina da Universidade Federal da Bahia, Brazil, Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), Switzerland, and University of Brescia, Italy. This project was funded by Fundação para a Ciência e a Tecnologia (Portugal), the European Commission's Framework Programme 6, Financiadora de Estudos e Projetos/Fundo Nacional de Desenvolvimento Científico e Tecnológico Amazônia (Brazil), Conselho Nacional de Pesquisa e Tecnologia (Brasil), Conselho Nacional de Ciência e Tecnologia (CNPq) (Brazil) and NIH.

*Raffaella Gozzelino, Bruno Bezerril Andrade, Rasmus Larsen, Nivea F. Luz, Liviu Vanoaica, Elsa Seixas, António Coutinho, Sílvia Cardoso, Sofia Rebelo, Maura Poli, Manoel Barral-Neto, Deepak Darshan, Lukas C. Kühn and Miguel P. Soares. (2012) Metabolic Adaptation to Tissue Iron Overload Confers Tolerance to Malaria. Cell Host & Microbe 12: 693-704.

** Ruslan Medzhitov, David S. Schneider and Miguel P. Soares. (2012) Disease Tolerance as a Defense Strategy. Science 335: 936-941.

Ana Mena | EurekAlert!
Further information:
http://www.igc.gulbenkian.pt

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>