Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time and Numbers Mix Together in the Brain

20.07.2011
Clocks tell time in numbers—and so do our minds, according to a new study which will be published in an upcoming issue of Psychological Science, a journal of the Association for Psychological Science. In two experiments, scientists found that people associate small numbers with short time intervals and large numbers with longer intervals—suggesting that these two systems are linked in the brain.

It’s clear that time and numbers are related in daily life, says Denise Wu of National Central University of Taiwan, who cowrote the new study with Acer Chang, Ovid Tzeng, and Daisy Hung. Numbers are used to represent distance and size, and to go to a farther place usually takes a longer time, for example.

But, she says, “Because the tradition of psychology is to manipulate one key variable of interest while controlling other confounding variables as much as possible, these domains were treated independently.” Recently, more researchers have started looking at how time and numbers are associated. Wu and her coauthors wanted to look more closely at this relationship, so they came up with a way to look at how numbers interfere with people’s perception of time.

In one experiment, each participant sat in front of a computer screen while a single-digit number appeared on the screen for a short time less than a second. After the number disappeared, the word “NOW” appeared on the screen, and the participant was supposed to hold down a key on the keyboard for as long as they thought the number had been displayed. The interaction between time and number was clear: after seeing a large number, like 9, people held the key down for longer than they did for a smaller number, like 2.

In another experiment, people saw a green dot for a short time. When they were asked to press the key, their key-press responses were accompanied by a number on the screen. In that case, they held down the key longer if they saw a small number and for a shorter time if they saw a large number. Wu thinks that happens because the small number makes people think they haven’t held down the key for long enough yet.

“We are really excited about this because this means the influence of the digit is so automatic and so immediate,” she says. The results suggest that the brain somehow processes time and the size of numbers together—possibly even with the same neurons. So, maybe instead of having different parts of the brain devoted to different kinds of measurement, there’s some part of the brain that is generally responsible for thinking about magnitude.

“It shows that it’s not like, mentally, we have a clock and it is immune to all the other information,” Wu says. Instead, your concept of time is responding to other things going on in the brain. In this case, it’s numbers, but it might also be influenced by emotion. For example, we all know that time passes more slowly in a boring meeting than when you’re chatting with a friend; maybe this is related to the ways that timekeeping links to other functions in the brain.

For more information about this study, please contact: Denise Wu at wuhsien@gmail.com.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Big time is not always long: Numerical magnitude automatically affects time reproduction" and access to other Psychological Science research findings, please contact Divya Menon at 202-293-9300 or dmenon@psychologicalscience.org.

Divya Menon | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>