Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time Flies When You’re Having Goal-Motivated Fun

22.08.2012
Though the seconds may tick by on the clock at a regular pace, our experience of the ‘fourth dimension’ is anything but uniform. When we’re waiting in line or sitting in a boring meeting, time seems to slow down to a trickle. And when we get caught up in something completely engrossing – a gripping thriller, for example – we may lose sense of time altogether.
But what about the idea that time flies when we’re having fun? New research from psychological science suggests that the familiar adage may really be true, with a caveat: time flies when we’re have goal-motivated fun.

Existing research demonstrates that experiencing positive feelings or states makes us feel like time is passing faster than negative feelings and states do. But, as some researchers observe, not all positive states are created equal. Sometimes we experience feelings of contentment or serenity. These feelings are certainly positive ones, but they aren’t very high in what researchers call ‘approach motivation’ – they don’t make us want to go out and pursue or achieve something. Feelings of desire or excitement, on the other hand, are very high in approach motivation – desire and excitement motivate us to go forth and conquer.

Psychological scientists Philip Gable and Bryan Pool of the University of Alabama hypothesized that it’s specifically those states that are high in approach motivation that make us feel like time is passing quickly. They decided to test this hypothesis in a series of three experiments and their results are published in the August 2012 issue of Psychological Science, a journal of the Association for Psychological Science.

In one of the experiments, participants were trained to tell the difference between pictures shown for a ‘short’ (400 ms) or a ‘long’ (1600 ms) period of time. The participants then viewed pictures that were neutral (geometric shapes), that were positive but low in approach motivation (e.g., flowers), or that were positive and high in approach motivation (delicious desserts). For each picture, they had to indicate whether the picture had been displayed for a short or long period of time.

Just as the researchers hypothesized, the participants perceived the enticing pictures of desserts as having been displayed for a shorter amount of time than either the neutral geometric shapes or the pleasing pictures of flowers.

The researchers also found that the perceived amount of time for the enticing pictures was related to when participants had eaten that day. Those participants who had eaten recently (lowering their approach motivation for food) judged the dessert pictures as having been displayed for longer periods of time than their hungrier peers.

These findings were confirmed in a second study, in which participants reported time as passing faster when they looked at the dessert pictures with the expectation that they would be able to eat those desserts later, suggesting that our desire to approach something really does make time fly by.

Importantly, this feeling that time is somehow shorter seems to be the specific result of our desire to approach or pursue something, not a more general effect of heightened attention or physiological arousal. In a third study, the researchers found that looking at pictures that evoked highly unpleasant feelings, which can also make us more alert and attentive, did not shorten people’s perception of time.

Gable and Pool propose that states high in approach motivation make us feel like time is passing quickly because they narrow our memory and attention processes, helping us to shut out irrelevant thoughts and feelings. This perceived shortening of time may help us to persist for longer periods of time in pursuing important adaptive goals, including food, water, and companionship.

“Although we tend to believe that time flies when we’re having a good time, these studies indicate what it is about the enjoyable time that causes it to go by more quickly,” says Gable. “It seems to be the goal pursuit or achievement-directed action we’re engaged in that matters. Just being content or satisfied may not make time fly, but being excited or actively pursuing a desired object can.”

For more information about this study, please contact: Philip A. Gable at pagable@gmail.com.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Time Flies When You’re Having Approach-Motivated Fun: Effects of Motivational Intensity on Time Perception" and access to other Psychological Science research findings, please contact Anna Mikulak at 202-293-9300 or amikulak@psychologicalscience.org.

Anna Mikulak | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>