Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Impact of Climate Change on Groundwater – a Ticking Time Bomb

24.01.2019

According to a study recently published in the journal Nature Climate Change, in most regions of the world the effects of today’s climate changes on groundwater will only become manifest over the next 100 years, thus impacting the lives of generations that come after us.

Climate change and its immediate, already perceptible consequences, such as the melting of the polar ice caps or coral bleaching, are regularly the focus of public attention. Less attention has so far been paid to a risk hidden deep in the ground. Groundwater is also affected by climate change.


People fetching water from a well in Kerala, South India

Photo: Till Oehler, Leibniz Centre for Tropical Marine Research

An international research team, including scientists of the Leibniz Centre for Tropical Marine Research (ZMT), has now determined how quickly groundwater reacts to climatic changes. The results of the study were recently published in Nature Climate Change.

Groundwater feeds mainly from rain that seeps into the soil and is stored there. Slowly, often only at a speed of a few metres per year, the water then flows into streams, rivers, lakes or directly into the sea.

There are several factors influencing the properties of such a groundwater system: the composition of the land surface, for example, or the slope of the terrain. These determine how fast the water is exchanged.

The scientists involved in the study from Europe, North America and Australia compiled global data sets on the characteristics of groundwater systems. Using simulation models, they calculated the response times of the systems to an increased or reduced water supply, as expected in the context of climate change.

The result was that in many areas the impact of climate change on groundwater will only become noticeable 100 or more years from now. Depending on its composition, a groundwater system can buffer fluctuations in the water supply to varying degrees. In dry regions, the time span is particularly long. There, the groundwater level is usually deep in the earth, the exchange with the land surface is low.

"The problem lies in the long reaction time of the groundwater systems,” said ZMT geoscientist Nils Moosdorf, one of the authors of the study. "Groundwater systems have a 'memory' that can turn out to be an ecological time bomb. What happens to them today casts its shadow far into the future and affects the living conditions of our great-grandchildren.”

Groundwater is the largest fresh water reserve on earth. More than two billion people obtain their drinking water from groundwater. Climate change, overexploitation and the growing world population pose major challenges to the sustainable management of water resources, especially in coastal regions. The results of the study are of great importance for corresponding management plans.

Wissenschaftliche Ansprechpartner:

Dr Nils Moosdorf
Leibniz Centre for Tropical Marine Research
Tel.: +49 (0)421 / 23800 – 33
e-mail: nils.moosdorf@leibniz-zmt.de

Originalpublikation:

Cuthbert, M.O., Gleeson, T., Moosdorf, N., Befus, K.M., Schneider, A., Hartmann, J., Lehner, B., 2019. Global patterns and dynamics of climate-groundwater interactions. Nature Climate Change, doi: http://dx.doi.org/10.1038/s41558-018-0386-4.

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft
Further information:
http://www.leibniz-zmt.de

More articles from Studies and Analyses:

nachricht Scientists Create New Map of Brain’s Immune System
18.02.2019 | Universitätsklinikum Freiburg

nachricht Forest Bird Community is endangered in South America
12.02.2019 | Humboldt-Universität zu Berlin

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>