Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technologies challenge old ideas about early hominid diets

14.10.2011
New assessments by researchers using the latest high-tech tools to study the diets of early hominids are challenging long-held assumptions about what our ancestors ate, says a study by the University of Colorado Boulder and the University of Arkansas.

By analyzing microscopic pits and scratches on hominid teeth, as well as stable isotopes of carbon found in teeth, researchers are getting a very different picture of the diet habitats of early hominids than that painted by the physical structure of the skull, jawbones and teeth.

While some early hominids sported powerful jaws and large molars -- including Paranthropus boisei, dubbed "Nutcracker Man" -- they may have cracked nuts rarely if at all, said CU-Boulder anthropology Professor Matt Sponheimer, study co-author.

Such findings are forcing anthropologists to rethink long-held assumptions about early hominids, aided by technological tools that were unknown just a few years ago. A paper on the subject by Sponheimer and co-author Peter Ungar, a distinguished professor at the University of Arkansas, was published in the Oct. 14 issue of Science.

Earlier this year, Sponheimer and his colleagues showed Paranthropus boisei was essentially feeding on grasses and sedges rather than soft fruits preferred by chimpanzees. "We can now be sure that Paranthropus boisei ate foods that no self-respecting chimpanzee would stomach in quantity," said Sponheimer. "It is also clear that our previous notions of this group's diet were grossly oversimplified at best, and absolutely backward at worst."

"The morphology tells you what a hominid may have eaten," said Ungar. But it does not necessarily reveal what the animal was actually dining on, he said.

While Ungar studies dental micro-wear -- the microscopic pits and scratches that telltale food leaves behind on teeth -- Sponheimer studies stable isotopes of carbon in teeth. By analyzing stable carbon isotopes obtained from tiny portions of animal teeth, researchers can determine whether the animals were eating foods that use different photosynthetic pathways that convert sunlight to energy.

The results for teeth from Paranthropus boisei, published earlier this year, indicated they were eating foods from the so-called C4 photosynthetic pathway, which points to consumption of grasses and sedges. The analysis stands in contrast to our closest human relatives like chimpanzees and gorillas that eat foods from the so-called C3 synthetic pathway pointing to a diet that included trees, shrubs and bushes.

Dental micro-wear and stable isotope studies also point to potentially large differences in diet between southern and eastern African hominids, said Sponheimer, a finding that was not anticipated given their strong anatomical similarities. "Frankly, I don't believe anyone would have predicted such strong regional differences," said Sponheimer. "But this is one of the things that is fun about science -- nature frequently reminds us that there is much that we don't yet understand.

"The bottom line is that our old answers about hominid diets are no longer sufficient, and we really need to start looking in directions that would have been considered crazy even a decade ago," Sponheimer said. "We also see much more evidence of dietary variability among our hominid kin than was previously appreciated. Consequently, the whole notion of hominid diet is really problematic, as different species may have consumed fundamentally different things."

While the new techniques have prompted new findings in the field of biological anthropology, they are not limited to use in human ancestors, according to the researchers. Current animals under study using the new tooth-testing techniques range from rodents and ancient marsupials to dinosaurs, said Sponheimer.

Much of Sponheimer's research on ancient hominids has been funded by the National Science Foundation.

Matt Sponheimer | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Studies and Analyses:

nachricht What and how much we eat might change our internal clocks and hormone responses
07.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Do horses copy humans?
30.10.2019 | Hochschule für Wirtschaft und Umwelt Nürtingen-Geislingen

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnetic tuning at the nanoscale

13.11.2019 | Physics and Astronomy

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

13.11.2019 | Physics and Astronomy

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>