Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technologies challenge old ideas about early hominid diets

14.10.2011
New assessments by researchers using the latest high-tech tools to study the diets of early hominids are challenging long-held assumptions about what our ancestors ate, says a study by the University of Colorado Boulder and the University of Arkansas.

By analyzing microscopic pits and scratches on hominid teeth, as well as stable isotopes of carbon found in teeth, researchers are getting a very different picture of the diet habitats of early hominids than that painted by the physical structure of the skull, jawbones and teeth.

While some early hominids sported powerful jaws and large molars -- including Paranthropus boisei, dubbed "Nutcracker Man" -- they may have cracked nuts rarely if at all, said CU-Boulder anthropology Professor Matt Sponheimer, study co-author.

Such findings are forcing anthropologists to rethink long-held assumptions about early hominids, aided by technological tools that were unknown just a few years ago. A paper on the subject by Sponheimer and co-author Peter Ungar, a distinguished professor at the University of Arkansas, was published in the Oct. 14 issue of Science.

Earlier this year, Sponheimer and his colleagues showed Paranthropus boisei was essentially feeding on grasses and sedges rather than soft fruits preferred by chimpanzees. "We can now be sure that Paranthropus boisei ate foods that no self-respecting chimpanzee would stomach in quantity," said Sponheimer. "It is also clear that our previous notions of this group's diet were grossly oversimplified at best, and absolutely backward at worst."

"The morphology tells you what a hominid may have eaten," said Ungar. But it does not necessarily reveal what the animal was actually dining on, he said.

While Ungar studies dental micro-wear -- the microscopic pits and scratches that telltale food leaves behind on teeth -- Sponheimer studies stable isotopes of carbon in teeth. By analyzing stable carbon isotopes obtained from tiny portions of animal teeth, researchers can determine whether the animals were eating foods that use different photosynthetic pathways that convert sunlight to energy.

The results for teeth from Paranthropus boisei, published earlier this year, indicated they were eating foods from the so-called C4 photosynthetic pathway, which points to consumption of grasses and sedges. The analysis stands in contrast to our closest human relatives like chimpanzees and gorillas that eat foods from the so-called C3 synthetic pathway pointing to a diet that included trees, shrubs and bushes.

Dental micro-wear and stable isotope studies also point to potentially large differences in diet between southern and eastern African hominids, said Sponheimer, a finding that was not anticipated given their strong anatomical similarities. "Frankly, I don't believe anyone would have predicted such strong regional differences," said Sponheimer. "But this is one of the things that is fun about science -- nature frequently reminds us that there is much that we don't yet understand.

"The bottom line is that our old answers about hominid diets are no longer sufficient, and we really need to start looking in directions that would have been considered crazy even a decade ago," Sponheimer said. "We also see much more evidence of dietary variability among our hominid kin than was previously appreciated. Consequently, the whole notion of hominid diet is really problematic, as different species may have consumed fundamentally different things."

While the new techniques have prompted new findings in the field of biological anthropology, they are not limited to use in human ancestors, according to the researchers. Current animals under study using the new tooth-testing techniques range from rodents and ancient marsupials to dinosaurs, said Sponheimer.

Much of Sponheimer's research on ancient hominids has been funded by the National Science Foundation.

Matt Sponheimer | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Studies and Analyses:

nachricht Graphene gives a tremendous boost to future terahertz cameras
16.04.2019 | ICFO-The Institute of Photonic Sciences

nachricht Mount Kilimanjaro: Ecosystems in Global Change
28.03.2019 | Julius-Maximilians-Universität Würzburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>