Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting blood vessels, immune system may offer way to stop infection-caused inflammation

18.03.2010
Protein pathway protects vessels from leaking fluid

Treating virulent influenza, sepsis, and other potentially deadly infections long has focused on looking for ways to kill viruses and bacteria. But new research from the University of Utah and Utah State University shows that modulating the body's own overeager inflammatory response to infection may help save more lives.

In a study published March 17 in Science Translational Medicine, researchers led by U of U cardiologist Dean Y. Li, M.D., Ph.D., professor of internal medicine and director of the Molecular Medicine Program, shows that protecting blood vessels from hyper-inflammatory response to infection reduced mortality rates in mouse models of avian flu and sepsis by as much as 50 percent. Specifically, the researchers identified a protein signaling pathway, Robo4, that when activated prevents inflammation from weakening blood vessels, which causes them to leak and can result in life-threatening organ damage.

The findings raise the possibility of new broad-range therapies that could be rapidly implemented by public health agencies to fight both viral and bacterial infections, such as pandemic influenza and sepsis, and even potentially deadly human-made biological agents that could cause widespread illness and death, according to Li. Such therapies would be given along with antibiotics, antivirals, and other drugs.

"By blocking the ill effects of inflammation on the host or patient by stabilizing blood vessels, we have identified an entirely different strategy to treat these infections," Li said. "In essence, we've shown that rather than attacking the pathogen, we can target the host to help it to fight infections."

While this study proves the concept of controlling the effects of inflammation to fight the effects of serious infection, developing therapies for people will take years.

Inflammation is a powerful weapon in the body's immune system; without this inflammation, patients would not be able to fight infection. But it's also a double-edged sword. When Biochemical mediators, called cytokines, are released in massive quantities as part of the inflammatory response, they can destabilize blood vessels, resulting in leakage, tissue edema (swelling), and in extreme cases, organ failure and death. For example, a severe infection such as that of the 1918 pandemic flu, can cause life-threatening lung damage when alveoli become inflamed and fill with fluid, a condition known as lung edema. Similarly, sepsis can damage organs such as the kidneys by weakening blood vessels and allowing fluid to leak into the kidney tissue, impairing its vital functions.

Although it will take much more work to determine if Robo4 can be manipulated to block inflammation in sepsis, influenza, and other infections, the protein's signaling pathway appears to be ideal for stabilizing the endothelial cells that line blood vessels, according to Guy A. Zimmerman, M.D., a U of U professor of internal medicine who investigates inflammation and sepsis. "For this reason, the Robo4 pathway may be more effective and less likely to have negative side-effects than some of the approaches and drugs that have been tried in the past," said Zimmerman, a co-author on the study.

Targeting the pathogens that cause influenza and sepsis has been the primary strategy to fight those infections. While this has been successful, it also has limitations because pathogens can evolve quickly to develop resistance to antibiotics and antiviral medications. A second approach has been to dampen a patient's immune system response to infection. However, past approaches led to poor outcomes in patients, in part because they sometimes increased the sick individual's susceptibility to a second, "opportunistic" infection.

Protecting the host from its own inflammatory response to infection offers a potential strategy to reduce the mortality rate from many different types of serious infections. In the mouse models of this study, the mortality rate for some sepsis and avian flu infections approached 90 percent when left untreated. By protecting blood vessels through activating Robo4, mortality was reduced in some cases to almost half.

Dale L. Barnard, Ph.D., a virus specialist and research associate professor at the Institute for Antiviral Research in the Department of Animal, Dairy and Veterinary Sciences at Utah State University, said the study opens a potentially exciting approach to treating virulent viral-caused infections such as pandemic H1N1 and the highly infectious avian flu. "It may be even a more effective approach if it were to be used in combination with antiviral drug therapy, perhaps allowing the antiviral drug to be used at concentrations below those which would induce drug resistance or allow the drug to be administered for shorter periods of time," said Barnard, also a co-author on the study.

Li's study of Robo4 as an agent for mitigating the effects of inflammation grew from his research into blood vessel formation. In 2003, he cloned Robo4 and showed that it inhibits uncontrolled blood vessel growth, thereby stabilizing vessels and preventing leakage. Robo4 is activated by another protein, called Slit.

Phil Sahm | EurekAlert!
Further information:
http://www.hsc.utah.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>