Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tannins in sorghum and benefits focus of university, USDA study

13.07.2012
Genetic research a step forward in improved health, pharmaceuticals and nutritional values of plants

They might be called a blessing or a curse -- tannins, which are present in certain sorghums, contain health-promoting antioxidant properties, but also provide a bitter taste and decreased protein digestibility.

To better understand tannins, their role in sorghum and how they can be altered to improve sorghum's use as food and feed, a team of scientists led by Kansas State University and U.S. Department of Agriculture researchers, has cloned the tannin gene in sorghum.

Tannins' high antioxidant, anti-inflammatory and UV-protective functions promote human health, plus recent studies show they can be a tool in fighting obesity because they reduce digestibility, said Jianming Yu, associate professor of agronomy at Kansas State University. Tannins in sorghum also provide a natural chemical defense against bird predation and bacterial and fungal attack in the field.

On the other hand, tannins provide a bitter taste to some foods and decrease protein digestibility and feed efficiency in humans and livestock.

The team was led by Yu, along with Tesfaye Tesso, Kansas State University sorghum breeder and associate professor of agronomy and Scott Bean, scientist with the U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) and adjunct faculty in the university's Department of Agronomy.

The researchers' study, "Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1" was published in the June 26 issue of the Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Sorghum is an old-world cereal grass that serves as a dietary staple for more than 500 million people in more than 30 countries, Yu said. In 2011, the United States was the No. 1 exporter of sorghum on the world market and the No. 2 producer (behind Nigeria), according to the U.S. Department of Agriculture. In 2011, Kansas produced 110.0 million bushels – 51 percent of the total U.S. crop. Sorghum production in the U.S., primarily for the feed industry, uses non-tannin sorghum hybrids.

Unlike many plants which employ C3 photosynthesis that uses water, carbon dioxide and solar energy to synthesize sugars, sorghum, which performs a modified form called C4 photosynthesis, has adapted to hot environments.

"One key reason to study tannins is to untangle their relationship with cold tolerance, a key agronomic trait to improve sorghum. The work is ongoing," said sorghum breeder Tesso. An earlier screening work found that a high proportion of cold tolerant sorghum lines contain tannins.

"Several other factors make tannins an important research subject," said Bean, noting their antioxidant capacity and relevant health benefits, their natural occurrence in some cereal crops, and their role in sorghum production. "Knowledge of tannins in biosynthesis pathways can be used to generate lines that produce high-content tannins in sorghum and other cereals to promote health through their unique nutritional properties."

This study, like many studies in recent years, benefits from work done several years ago on Arabidopsis, which are small flowering plants related to cabbage and mustard, said Yuye Wu, the first author and Kansas State University research associate of agronomy. "Many genes have been identified in Arabidopsis, through the mutational approach, but there is still much to be learned about the genetic control of tannins in cereal crops."

"This kind of genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health," Yu said. What the researchers learn about tannins in sorghum will be beneficial to the future study of tannins in other plants, including some fruits, vegetables and a few other grains such as finger millets and barley.

Other researchers involved in the study were Mitch Tuinstra, Purdue University; Ming Li Wang, USDA-ARS, Griffin, Georgia; and Guihua Bai, USDA-ARS and adjunct professor of agronomy at Kansas State University.

The project was supported by USDA National Institute of Food and Agriculture, Department of Energy Plant Feedstock Genomics Program, National Science Foundation Plant Genome Research Program, USDA Agricultural Research Service, and the National Sorghum Checkoff program.

Jianming Yu | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>