Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synchronizing a failing heart

15.11.2010
New hope and proven help for heart failure patients: International study proves medical device therapy to boosts a fading heart beat

One of the largest, most extensive worldwide investigations into heart failure, led by the University of Ottawa Heart Institute (UOHI), conclusively proves that a new therapeutic implant synchronizes and strengthens a fading heart beat while reducing risk of death by 24% compared to the current treatment.

The research, co-led by Dr. Anthony Tang and Dr. George Wells at the Heart Institute, brings the promise of life-saving treatment for patients with symptoms of mild to moderate heart failure – an increasingly common condition among an aging population that can lead to sudden cardiac death. Each year, more than 500,000 Canadians and five million Americans suffer heart failure.

"This kind of device brings the potential to save thousands of lives in Canada alone and offers new hope to so many heart patients and their families. Helping the lower chambers of the heart beat strongly and in unison can improve a person's quality of life, keep them out of hospital longer and reduce their risk of sudden death," said Dr. Tang.

Results of the clinical trial, which got under way in 2003, were published online today in the prestigious New England Journal of Medicine (www.NJEM.org) and coincided with the release of the Heart Institute analysis at the Scientific Sessions of the American Heart Association in Chicago. The research represents one of the largest international medical device trials undertaken in 2003, comprising 1,798 patients in 24 centres in Canada, Australia, Europe and Turkey.

The Ottawa team consisted largely of top electrophysiologists – cardiologists specializing in surgical procedures to regulate a faulty heart rhythm. Heart failure patients were implanted with either a basic miniature defibrillator (ICD) or with a new device carrying insulated wires called leads to transmit signals and electrical impulses to the heart in an effort to stimulate and coordinate the heart to be beating in-sync. This therapy is called cardiac resynchronization therapy (CRT).

The study, which followed patients for an average of 40 months, showed that patients with CRT live longer with a reduction of the rate of death. In addition, patients with CRT were less likely to be admitted to hospital for worsening of heart failure.

Until now, no research had been undertaken to examine the specific benefits and survival rates in heart failure patients who have been implanted with a CRT along with an ICD.

"This trial represents a tremendous research success for cardiovascular scientists and demonstrates the importance of clinical evaluative research," said Dr. Alain Beaudet, President of the Canadian Institutes of Health Research, which co-funded the research. "We congratulate the Heart Institute for its efforts, which will lead to better health outcomes and longer lives for heart patients."

"Medtronic recognizes the expertise of Canadian electrophysiologists and congratulates them for their leadership in participating and leading this key clinical trial to investigate the benefits of cardiac device therapy in heart failure patients," said Neil Fraser, President of Medtronic of Canada Ltd., which also co-funded the research. "This trial demonstrates that a broader population of heart failure patients could benefit from our therapies, including those with mild symptoms, and they should receive them."

About UOHI

The University of Ottawa Heart Institute is Canada's largest and foremost cardiovascular health centre dedicated to understanding, treating and preventing heart disease. We deliver high-tech care with a personal touch, shape the way cardiovascular medicine is practiced, and revolutionize cardiac treatment and understanding. We build knowledge through research and translate discoveries into advanced care. We serve the local, national and international community, and are pioneering a new era in heart health. For more information, visit www.ottawaheart.ca

For further information please contact:
Marlene Orton
Senior Manager, Public Affairs
University of Ottawa Heart Institute
613-761-4427
mobile: 613-599-6760
morton@ottawaheart.ca

Marlene Orton | EurekAlert!
Further information:
http://www.ottawaheart.ca

More articles from Studies and Analyses:

nachricht Drought hits rivers first and more strongly than agriculture
06.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>