Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising diversity at a synapse hints at complex diversity of neural circuitry

23.02.2012
A new study reveals a dazzling degree of biological diversity in an unexpected place – a single neural connection in the body wall of flies.

The finding, reported in this week's online edition of the Proceedings of the National Academy of Sciences, raises several interesting questions about the importance of structure in the nervous system and the evolution of neural wiring.

"We know almost nothing about the evolution of the nervous system, although we know it has to happen – behaviors change, complexity changes, there is the addition of new neurons, formation of different synaptic connections," says geneticist Barry Ganetzky, the Steenbock Professor of Biological Sciences at the University of Wisconsin–Madison.

The result is even more remarkable because he and graduate student Megan Campbell found the surprising diversity in a location very familiar to scientists. Called neuromuscular junction 4 (NMJ4), it's where a single motor neuron contacts a specific muscle in the fly body wall to drive its activity.

The synapses where neurons connect with their neuronal or muscular targets are morphologically complex, resembling miniature trees decked out with tiny bulbs that are the nerve terminals, called synaptic boutons.

"Synapses are where the important information transfer and integrative functions of the nervous system occur," Ganetzky explains. "It's the fundamental place where information processing takes place, and there is an underlying belief that the structure of the synapse is key to understanding its function."

Each muscle is innervated by a different motor neuron that forms an NMJ with a shape, size, and geometry that is characteristic for that particular NMJ. Fortunately, the consistency of the fly's anatomy makes it possible to identify the exact same synapse in different individual flies, even across different species. NMJ4 is well studied in the context of synaptic development and function, and Ganetzky himself has used NMJ4 for decades to pinpoint genes with a host of biological roles from movement disorders to neurodegeneration.

The current project began with a simple musing about what really is "normal" for laboratory-bred fruit flies and their wild brethren. Looking at the NMJ4 in the common lab fruit fly, Drosophila melanogaster, Campbell found that the synaptic morphology was consistent between lab-bred and wild flies, and between strains collected in Madison, Wis., and as far away as Zimbabwe. All the flies had similar-looking arbors and boutons.

Encouraged, they decided to branch out. "Drosophila is a very rich genus – thousands of species with different behaviors, different food preferences, different environments, different climates, different sizes – with upward of 50 million years of divergence," comparable to the evolutionary separation between mice and humans, says Ganetzky.

Despite such differences, he adds, the larval body plan is exactly the same across all known Drosophila species regardless of their size, habitat, or food source. "Cell for cell, the body wall musculature and innervation patterns are identical," he says.

They began to look at NMJ4 in other Drosophila species, aided by the fly collection of UW–Madison evolutionary biologist Sean B. Carroll. When they focused on their target synapse in 21 different species of Drosophila from around the world, they expected to find some predictable patterns of modest variation.

But after looking at just a few species, Campbell says, a different story emerged: like Drosophila melanogaster, each species had a characteristic NMJ4 appearance, but that appearance varied dramatically among species. In some species, NMJ4 consisted of a few boutons arranged in a simple unbranched pattern; others had many boutons distributed over a number of long branches or numerous boutons packed into dense, tightly clustered arbors.

"The results were absolutely flabbergasting – variation far beyond anything we ever anticipated," Ganetzky says.

But the surprises didn't end there.

The striking differences in complexity did not correlate with evolutionary relatedness of the species; in other words, the NMJs of more closely related species did not look any more alike than those of more distantly related flies.

They even found distinct differences between species separated by less than one million years of evolution, species that are otherwise so similar that even fly experts struggle to distinguish them based on appearance. Such rapid evolution is remarkable, the authors say, though its biological significance isn't yet clear.

What could explain such tremendous variation? One possibility is genetic drift – the random accumulation of genetic changes that alter the appearance of the NMJ but otherwise have no effect on the organism; in essence, any NMJ that gets the job done will suffice. The alternative is that each NMJ is shaped by natural selection because its particular size and structure in some way increases survival or reproductive success for members of that species.

With help from fellow UW–Madison geneticists Bret Payseur and Beth Dumont, they used a quantitative model to analyze the different NMJ morphologies as a function of the evolutionary relationship among 11 species whose evolutionary tree is precisely known from genome sequencing. The results, Ganetzky says, indicate that the variability they observed is unlikely to be random. "What that suggests is that there is some driving force – natural selection – that is shaping the synapse to be a particular way."

Thinking that neural function would be an obvious target of selection, they measured electrical activity in the circuit. But activity recordings from four species representing the range of morphological complexity revealed the same basic neural workings no matter the synaptic structure.

The researchers say there may be subtle functional differences between the different NMJ structures, undetected by their assay but which could translate to distinct biological differences – for example, learning capacity or response to stressful conditions – that would provide a target for natural selection.

"We believe there's some reason why the variation matters, but we don't know yet what that reason is," Ganetzky says.

Meanwhile Campbell and Ganetzky are now working to understand the underlying genetic and molecular mechanisms as well as the biological significance, if any, of that naturally occurring variation.

"We think we've made an important discovery about nature that we think opens up all kinds of new doors. At this point, we've raised many, many more questions than we've answered… questions about the evolution of nervous systems, evolution of behavior, the relationship between neuronal and synaptic morphology and function," Ganetzky says. "I hope this captures the interest of scientists in many other fields to apply their own areas of expertise."

Barry Ganetzky | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Rising CO2 has unforeseen strong impact on Arctic plant productivity
21.02.2019 | Max-Planck-Institut für Meteorologie

nachricht Scientists Create New Map of Brain’s Immune System
18.02.2019 | Universitätsklinikum Freiburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>