Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study yields better turbine spacing for large wind farms

21.01.2011
Large wind farms are being built around the world as a cleaner way to generate electricity, but operators are still searching for the most efficient way to arrange the massive turbines that turn moving air into power.

To help steer wind farm owners in the right direction, Charles Meneveau, a Johns Hopkins fluid mechanics and turbulence expert, working with a colleague in Belgium, has devised a new formula through which the optimal spacing for a large array of turbines can be obtained.

"I believe our results are quite robust," said Meneveau, who is the Louis Sardella Professor of Mechanical Engineering in the university's Whiting School of Engineering. "They indicate that large wind farm operators are going to have to space their turbines farther apart."

The newest wind farms, which can be located on land or offshore, typically use turbines with rotor diameters of about 300 feet. Currently, turbines on these large wind farms are spaced about seven rotor diameters apart. The new spacing model developed by Meneveau and Johan Meyers, an assistant professor at Katholieke Universiteit Leuven in Belgium, suggests that placing the wind turbines 15 rotor diameters apart -- more than twice as far apart as in the current layouts -- results in more cost-efficient power generation.

Meneveau presented the study results recently at a meeting of the American Physical Society Division of Fluid Dynamics. Meyers, co-author of the study, was unable to attend.

The research is important because large wind farms – consisting of hundreds or even thousands of turbines – are planned or already operating in the western United States, Europe and China. "The early experience is that they are producing less power than expected," Meneveau said. "Some of these projects are underperforming."

Earlier computational models for large wind farm layouts were based on simply adding up what happens in the wakes of single wind turbines, Meneveau said. The new spacing model, he said, takes into account interaction of arrays of turbines with the entire atmospheric wind flow.

Meneveau and Meyers argue that the energy generated in a large wind farm has less to do with horizontal winds and is more dependent on the strong winds that the turbulence created by the tall turbines pulls down from higher up in the atmosphere. Using insights gleaned from high-performance computer simulations as well as from wind tunnel experiments, they determined that in the correct spacing, the turbines alter the landscape in a way that creates turbulence, which stirs the air and helps draw more powerful kinetic energy from higher altitudes.

The experiments were conducted in the Johns Hopkins wind tunnel, which uses a large fan to generate a stream of air. Before it enters the testing area, the air passes through an "active grid," a curtain of perforated plates that rotate randomly and create turbulence so that the air moving through the tunnel more closely resembles real-life wind conditions.

Air currents in the tunnel pass through a series of small three-bladed model wind turbines mounted atop posts, mimicking an array of full-size wind turbines. Data concerning the interaction of the air currents and the model turbines is collected by using a measurement procedure called stereo particle-image-velocimetry, which requires a pair of high-resolution digital cameras, smoke and laser pulses.

Further research is needed, Meneveau said, to learn how varying temperatures can affect the generation of power on large wind farms. The Johns Hopkins professor has applied for continued funding to conduct such studies.

Related links:

Johns Hopkins video on wind turbine research: http://www.youtube.com/watch?v=U3F9qGo549k

Johns Hopkins News Release - Wind Turbines Produce 'Green' Energy — and Airflow Mysteries: http://www.jhu.edu/news/home07/dec07/wind.html

National Science Foundation Feature - Lab Tests Show Wind Turbine's Air Flow: http://www.nsf.gov/discoveries/disc_summ.jsp?org=NSF&cntn_id=112626&preview=false

Charles Meneveau's research page: http://www.me.jhu.edu/meneveau/

Johns Hopkins Department of Mechanical Engineering: http://www.me.jhu.edu/

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Studies and Analyses:

nachricht Drought hits rivers first and more strongly than agriculture
06.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>