Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Provides Better Understanding of Water’s Freezing Behavior at Nanoscale

23.05.2013
The results of a new study led by George Washington University Professor Tianshu Li provide direct computational evidence that nucleation of ice in small droplets is strongly size-dependent, an important conclusion in understanding water’s behavior at the nanoscale.

The formation of ice at the nanoscale is a challenging, basic scientific research question whose answer also has important implications for climate research and other fields.

The crystallization of ice from supercooled water is generally initiated by a process called nucleation. Because of the speed and size of nucleation—it occurs within nanoseconds and nanometers—probing it by experiment or simulation is a major challenge.

By using an advanced simulation method, Dr. Li and his collaborators, Davide Donadio of Germany’s Max Planck Institute for Polymer Research, and Giulia Galli, a professor of chemistry and physics at the University of California, Davis, were able to demonstrate that nucleation of ice is substantially suppressed in nano-sized water droplets. Their paper, “Ice nucleation at the nanoscale probes no man’s land of water,” was published today in the journal Nature Communications.

“A current challenge for scientists is to unveil water’s behaviors below -35 degrees Celsius and above -123 degrees Celsius, a temperature range that chemists call ‘no man’s land,’ ” said Dr. Li, a professor of civil and environmental engineering at the George Washington University School of Engineering and Applied Science. “Fast ice crystallization can hardly be avoided at such low temperatures, so maintaining water in a liquid state is a major experimental challenge.”

Since the frequency of ice nucleation scales with the volume of water, one of the strategies for overcoming this kinetic barrier is to reduce the volume of water. However, this raises the question of whether water at the nanoscale can still be regarded as equivalent to bulk water, and if not, where that boundary would be.

The team’s results answer this question. By showing that the ice nucleation rate at the nanoscale can be several orders of magnitude smaller than that of bulk water, they demonstrate that water at such a small scale can no longer be considered bulk water.

“We also predict where this boundary would reside at various temperatures,” Dr. Li said. The boundary refers to the size of the droplet where the difference vanishes. The team’s findings will help with the interpretation of molecular beam experiments and set the guidelines for experiments that probe the ‘no man’s land’ of water.

The results are also of importance in atmospheric science, as they may improve the climate model of the formation of ice clouds in upper troposphere, which effectively scatter incoming solar radiation and prevent earth from becoming overheated by the sun. The results have important implications in climate control research, too. One of the current debates is whether the formation of ice occurs near the surface or within the micrometer-sized droplets suspended in clouds. If it is the former, effective engineering approaches may be able to be taken to tune the surface tension of water so that the ice crystallization rate can be controlled.

“Our results, indeed, support the hypothesis of surface crystallization of ice in microscopic water droplets,” Dr. Li said. “Obtaining the direct evidence is our next step.”

GW School of Engineering and Applied Science
GW’s School of Engineering and Applied Science prepares engineers and applied scientists to address society’s technological challenges by offering outstanding undergraduate, graduate and professional educational programs, and by providing innovative, fundamental and applied research activities. The school has five academic departments, 11 research centers, 90 faculty and more than 2,500 undergraduate and graduate students. Core areas of academic excellence include biomedical engineering, cybersecurity, high performance computing, nanotechnologies, robotics and transportation safety engineering.

Kurtis Hiatt | Newswise
Further information:
http://www.gwu.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>