Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows How Vitamin E Can Help Prevent Cancer

15.03.2013
Researchers have identified an elusive anti-cancer property of vitamin E that has long been presumed to exist, but difficult to find.

Many animal studies have suggested that vitamin E could prevent cancer, but human clinical trials following up on those findings have not shown the same benefits.

In this new work, researchers showed in prostate cancer cells that one form of vitamin E inhibits the activation of an enzyme that is essential for cancer cell survival. The loss of the enzyme, called Akt, led to tumor cell death. The vitamin had no negative effect on normal cells.

“This is the first demonstration of a unique mechanism of how vitamin E can have some benefit in terms of cancer prevention and treatment,” said lead author Ching-Shih Chen, professor of medicinal chemistry and pharmacognosy at The Ohio State University and an investigator in Ohio State’s Comprehensive Cancer Center.

The study appears in the March 19, 2013, issue of the journal Science Signaling.

Chen cautioned that taking a typical vitamin E supplement won’t offer this benefit for at least two reasons: The most affordable supplements are synthetic and based predominantly on a form of the vitamin that did not fight cancer as effectively in this study, and the human body can’t absorb the high doses that appear to be required to achieve the anti-cancer effect.

“Our goal is to develop a safe pill at the right dose that people could take every day for cancer prevention. It takes time to optimize the formulation and the dose,” he said.

Chen has filed an invention disclosure with the university, and Ohio State has filed a patent application for the agent.

Vitamin E occurs in numerous forms based on their chemical structure, and the most commonly known form belongs to a variety called tocopherols. In this study, researchers showed that, of the tocopherols tested, the gamma form of tocopherol was the most potent anti-cancer form of the vitamin.

The scientists manipulated the structure of that vitamin E molecule and found that the effectiveness of this new agent they created was 20-fold higher than the vitamin itself in cells. In experiments in mice, this agent reduced the size of prostate cancer tumors.

These findings suggest that an agent based on the chemical structure of one form of vitamin E could help prevent and treat numerous types of cancer – particularly those associated with a mutation in the PTEN gene, a fairly common cancer-related genetic defect that keeps Akt active.

The researchers began the work with both alpha and gamma forms of the vitamin E molecule. Both inhibited the enzyme called Akt in very targeted ways, but the gamma structure emerged as the more powerful form of the vitamin.

In effect, the vitamin halted Akt activation by attracting Akt and another protein, called PHLPP1, to the same region of a cell where the vitamin was absorbed: the fat-rich cell membrane. PHLPP1, a tumor suppressor, then launched a chemical reaction that inactivated Akt, rendering it unable to keep cancer cells alive.

“This is a new finding. We have been taking vitamin E for years but nobody really knew about this particular anti-cancer mechanism,” Chen said.

The gamma form was most effective because its chemical shape allowed it to attach to Akt in the most precise way to shut off the enzyme.

Because of how the various molecules interacted on the cell membrane, the scientists predicted that shortening a string of chemical groups dangling from the main body, or head group, of the gamma-tocopherol molecule would make those relationships even stronger. They lopped off about 60 percent of this side chain and tested the effects of the new agent in the prostate cancer cells.

“By reducing two-thirds of the chain, the molecule had a 20 times more potent anti-tumor effect, while retaining the integrity of vitamin E’s head group,” Chen said. This manipulation enhanced the anti-tumor potency of the molecule by changing its interaction with the cell membrane, so that the head group was more accessible to Akt and PHLPP1.

When mice with tumors created by these two prostate cancer cell lines were injected with the agent, the treatment suppressed tumor growth when compared to a placebo, which had no effect on tumor size. Chemical analysis of the treated tumors showed that the Akt enzyme signal was suppressed, confirming the effects were the same in animals as they had been in cell cultures.

The animal study also suggested the experimental agent was not toxic. Chen’s lab is continuing to work on improvements to the molecule.

This work was supported by the National Institutes of Health.

Co-authors include Po-Hsien Huang, Hsiao-Ching Chuang, Chih-Chien Chou, Huiling Wang, Su-Lin Lee, Hsiao-Ching Yang, Hao-Chieh Chiu, Naval Kapuriya, Dasheng Wang and Samuel Kulp of the Division of Medicinal Chemistry and Pharmacognosy at Ohio State. Huang and Chen also are affiliated with National Cheng-Kung University, Yang with Fu-Jen Catholic University, and Chiu with National Taiwan University, all in Taiwan; and Kapuriya with Saurashtra University in Gujarat, India.

Contact: Ching-Shih Chen, (614) 688-4008; chen@pharmacy.ohio-state.edu
(Email is the best way to contact Chen.)
Written by Emily Caldwell, (614) 292-8310; Caldwell.151@osu.edu

Ching-Shih Chen | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>