Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows How Substance in Grapes May Squeeze Out Diabetes

16.10.2009
A naturally produced molecule called resveratrol, found in the skin of red grapes, has been shown to lower insulin levels in mice when injected directly into the brain, even when the animals ate a high-fat diet.

The findings from a new UT Southwestern Medical Center study suggest that when acting directly on certain proteins in the brain, resveratrol may offer some protection against diabetes.

Prior research has shown that the compound exerts anti-diabetic actions when given orally to animals with type 2 diabetes (non-insulin dependent diabetes mellitus), but it has been unclear which tissues in the body mediated these effects.

“Our study shows that the brain plays an important role in mediating resveratrol’s anti-diabetic actions, and it does so independent of changes in food intake and body weight,” said Dr. Roberto Coppari, assistant professor of internal medicine at UT Southwestern and senior author of the study appearing online and in the December issue of Endocrinology.

“These animals were overrun with fat and many of their organs were inflamed. But when we delivered resveratrol in the brain, it alleviated inflammation in the brain,” added Dr. Coppari.

Dr. Coppari emphasized that his study does not support the conclusion that consuming products made from red grapes, such as red wine, could alleviate diabetes.

“The main reason is that resveratrol does not cross the blood brain barrier efficiently,” he said. “In order for the brain to accumulate the same dose of resveratrol delivered in our study, the amounts of red wine needed daily would surely cause deleterious effects, especially in the liver. Rather, our study suggests that resveratrol’s analogs that selectively target the brain may help in the fight against diet-induced diabetes.”

For the study, the researchers investigated what happens when resveratrol acts only in the brain. Specifically, they wanted to know whether resveratrol injected in the brain activated a group of proteins called sirtuins, which are found throughout the body and thought to underlie many of the beneficial effects of calorie restriction. Previous animal research has shown that when these proteins are activated by resveratrol, diabetes is improved. In addition, drugs activating sirtuins currently are being tested as anti-diabetic medications in human trials, Dr. Coppari said.

In one group of animals, researchers injected resveratrol directly into the brain; another group received a saline-based placebo. All the surgically treated animals consumed a high-fat diet before and after the surgery.

Dr. Coppari said the insulin levels of the animals treated with the placebo solution rose increasingly higher post-surgery. “That’s a normal outcome because insulin sensitivity decreases the longer you keep an animal on a high-fat diet.”

Insulin levels in the mice given resveratrol, however, actually started to drop and were halfway to normal by the end of the five-week study period, even though the animals remained on a high-fat diet.

In addition, the researchers found that resveratrol did indeed activate sirtuin proteins in the brain.

Dr. Coppari said the findings support his team’s theory that the brain plays a vital role in mediating the beneficial effects of resveratrol and that manipulation of brain sirtuins also may have other beneficial outcomes. “By knowing that the central nervous system is involved, pharmaceutical companies can begin to focus on developing drugs that selectively target sirtuins in the brain,” he said.

The next step, Dr. Coppari said, is to determine precisely which neurons in the brain are mediating the effects of the resveratrol.

Other UT Southwestern researchers involved in the study include Drs. Giorgio Ramadori, Laurent Gautron and Teppei Fujikawa, postdoctoral researchers in internal medicine; Dr. Claudia Vianna, instructor of internal medicine; and Dr. Joel Elmquist, professor of internal medicine and director of the Center for Hypothalamic Research at UT Southwestern.

The study was supported by the American Heart Association, National Institutes of Health and the American Diabetes Association.

Visit www.utsouthwestern.org/endocrinology to learn more about clinical services in endocrinology at UT Southwestern, including treatment of diabetes.

Dr. Roberto Coppari -- www.utsouthwestern.edu/findfac/professional/0,2356,91961,00.html

Kristen Holland Shear | Newswise Science News
Further information:
http://www.utsouthwestern.org/endocrinology

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>