Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how to reduce inappropriate shocks from implanted defibrillators

08.11.2012
Loyola University Medical Center is one of the centers participating in a landmark study that could lead to fewer inappropriate shocks from implanted defibrillators.

Implanted defibrillators save lives by shocking hearts back into a normal rhythm. But sometimes a defibrillator can go off when it's not necessary, delivering a shock that feels like a kick in the chest.

The study found reprogramming defibrillators to be less sensitive to irregular heart rhythms reduced the number of inappropriate shocks, while also reducing mortality. The study was presented at a meeting of the American Heart Association Scientific Sessions and is being published in the New England Journal of Medicine.

"Inappropriate shocks can be painful and psychologically traumatic to patients," said cardiologist Dr. Peter Santucci, medical director of Loyola's Implant Device Program. "It's important to reduce these shocks, and results of this study will help us to do this, while also potentially improving patients' survival."

Santucci enrolled Loyola patients in the multicenter international trial. Dr. David Wilber, director of Loyola's Cardiovascular Institute, is a co-author of the paper.

The trial is known as MADIT-RIT (Multicenter Automatic Defibrillator Implantation Trial - Reduce Inappropriate Therapy). First author is Dr. Arthur J. Moss of the University of Rochester Medical Center.

An implantable cardioverter defibrillator (ICD) is about the size of a pocket watch and is implanted below the collarbone. Wire leads connect to the heart. The device is designed to protect against tachyarrhythmias - quivering, superfast heartbeats that prevent the heart from pumping blood effectively.

When the heart goes into a tachyarrhythmia, the ICD's pacemaker is activated. If the pacemaker fails to restore a normal rhythm, the ICD then delivers a powerful electric shock that jolts the heart back into a normal rhythm. But previous research, cited in the new paper, found that ICDs are inappropriately activated in between 8 percent and 40 percent of patients.

Under conventional programming, an ICD may be activated if the heart rate reaches 170 to 199 beats per minute for 2.5 seconds or at least 200 beats per minute for 1 second. If the heart rate does not slow within 5 to 10 seconds, a shock may be delivered.

The study included 1,500 patients who were randomly assigned to three groups. The first group had ICDs with conventional programming. In the second group, the ICDs would not activate unless the heart rate was at least 200 beats per minute. In the third group, the ICDs were programmed to have longer delays before activation (for example, a 60-second delay when the heart rate was at 170 to 199 beats per minute).

After an average follow-up of 1.4 years, patients in the second group had a 79 percent reduction in first-time inappropriate ICD activation. Patients in the third group had a 76 percent reduction in first-time inappropriate activation.

There was a 55 percent reduction in deaths in the second group and a 44 percent reduction in deaths in the third group.

Wilber is a professor and Santucci is an associate professor in the Department of Medicine, Division of Cardiology of Loyola University Chicago Stritch School of Medicine.

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

ETRI exchanged quantum information on daylight in a free-space quantum key distribution

10.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>