Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows Promise for Item-Level Use of RFID in Retail Environment

07.08.2008
A new study by the RFID Research Center at the University of Arkansas shows further promise for the use of radio-frequency identification tags on individual retail items.

Researchers tested three popular retail scenarios, and the technology yielded read-rate percentages at or near 100 percent with one or more combinations of tags and readers. The results are encouraging for managers looking for better methods of tracking and managing inventory through all phases of a retail operation, including point of sale.

“The purpose of this feasibility study was to provide initial proof-of-concept data and insights,” said Bill Hardgrave, director of the research center and professor of information systems in the Sam M. Walton College of Business. “The overall results are very encouraging and indicate a favorable outcome with many types of tags and readers. This project has successfully demonstrated the feasibility of RFID for specific applications and has the potential to satisfy many common-use cases, especially inventory management.”

The researchers attached passive, ultra-high frequency, generation 2 tags to a variety of individual clothing and footwear items, including shirts, pants, socks, underwear and shoes. Generation 2 refers to the highest-performing technical protocol for passive RFID tags, as approved by EPCglobal Inc., the organization that sets international RFID standards. Tests included three different types of tags, four mobile devices, including handheld readers, and three static readers. Non-hand-held mobile readers were used on forklifts, pushcarts and other transport devices.

Scenarios covered basic in-store situations in which items and readers were either mobile or stationary. For example, the first scenario included static items and moving readers. Items were hung on two different types of fixtures – a “rounder” and “z-bar” – and placed on shelves and in boxes. In each situation, an associate walked around a fixture, shelf or box and scanned items by pointing a hand-held reader at them. Sometimes, depending on the situation, the reader was moved in a horizontal, vertical or sweeping fashion. In all situations, a 100-percent read rate was achieved using one or more combinations of tags and readers. Not all tests produced 100-percent read rates, but at least one test per situation did.

“This was insightful,” Hardgrave said. “It suggested influence on read rates from such things as tag type, reader type, tag location, fixture type and number of items on a fixture.”

Although this test scenario – static items/moving readers – focused on effectiveness of the technology, it also provided a glimpse into potential efficiency gains from using RFID. For example, as a baseline comparison, inventory for a rounder fixture containing 97 items was taken using a barcode reader. This process took approximately nine minutes. With the same fixture and same number of items, inventory with RFID took only seven seconds.

In the second test scenario, both tagged items and readers were stationary. This scenario included a “smart shelf,” a conventional shelf in which reader antennae were embedded in zones within the shelves. Each shelf was attached to the reader, which was set to read tags every 15 seconds. Tests consisted of removing and replacing items on multiple shelves and noting the read rate. The scenario was designed to simulate the movement of items during daily actions of shoppers and store associates. The smart shelf read 100 percent of the items on the shelf for at least one tag type.

A point-of-sale system was also part of the second test scenario. In this test, researchers constructed an aluminum cylinder and placed it around an antennae positioned under a sales desktop. The cylinder funneled the radio-frequency field into a precise read zone required for a practical point-of-sale application. Researchers performed several real-world enactments, including hanging or placing many items near the zone, to test the robustness of the system. The reader consistently read only items within the pricing zone and ignored all tags outside the zone. The researchers used two tag types and experimented with four groups of items. Each group contained a different number of items. Seven out of eight tests yielded 100-percent read rates.

The third test scenario involved mobile items and a fixed reader. Associates moved items through a static reader portal, similar to the theft-prevention gates seen in many department stores, on various transport devices, including rolling fixtures, plastic and steel handcarts and a conveyor. Except for the situation of boxes on a conveyor moving at a rate of 600 feet per minute, which read at 99.07-percent success, all other situations achieved a 100-percent read rate using one or more combinations of tags and readers.

The project is an initial phase of a broader effort to identify what retailers call “use cases” or “payback areas,” which are simply business processes upon which retailers expect item-level tagging to have the greatest impact. In this instance, the major use cases included product life-cycle management, inventory management, loss prevention, dressing-room management and point of sale. Beyond the imminent goal of providing an objective evaluation of item-level tagging for apparel and footwear, the project will lead to further research that will generate greater inventory efficiency for retailers and product availability for consumers. Taken further, the research could lead to consumers purchasing items without a cash register.

The study is available for download at http://itri.uark.edu/research. Enter “rfid” as the keyword.

The University of Arkansas RFID Research Center is a subunit of the Information Technology Research Institute within the Walton College. The center was formally approved by the Arkansas Department of Higher Education and began operating in early 2005. The center officially opened in June 2005. In September 2005, the center passed performance accreditation criteria established by EPCglobal Inc. The center is the only accredited academic EPC/RFID test center in the world.

Hardgrave, holder of the Edwin and Karlee Bradberry Chair in Information Systems, is also executive director of the Information Technology Research Institute.

CONTACT:

Bill Hardgrave, professor of information systems; executive director, Information Technology Research Institute; director, RFID Research Center
Sam M. Walton College of Business
(479) 575-6099 or (479) 200-7389, bhardgrave@walton.uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>