Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows projected climate change in West Africa not likely to worsen malaria situation

16.09.2013
As public-health officials continue to fight malaria in sub-Saharan Africa, researchers are trying to predict how climate change will impact the disease, which infected an estimated 219 million people in 2010 and is the fifth leading cause of death worldwide among children under age 5.

But projections of future malaria infection have been hampered by wide variation in rainfall predictions for the region and lack of a malaria-transmission model that adequately describes the effects of local rainfall on mosquitoes, which breed and mature in ephemeral pools that form during and after monsoons in West Africa.

A new MIT study led by Elfatih Eltahir, a professor in the Department of Civil and Environmental Engineering, combines a new model of malaria transmission with global forecasts for temperature and rainfall to improve predictions of malaria with climate change. Eltahir and graduate student Teresa Yamana found that although the capacity for malaria transmission will change in some areas of West Africa, overall infection rates are not likely to increase: Climate change by itself is not likely to make the situation worse. A paper on the study appeared online Sept. 16 in the journal Environmental Health Perspectives.

"Malaria is one of the world's leading public-health problems, taking a toll not only in lives, but also in economic terms, especially in Africa," Eltahir says. "While other researchers are looking at the global impacts of climate change on broadly defined variables such as global temperature or global sea level, the biggest challenge faced by the global climate-change research community is how to come up with credible predictions for specific variables that are relevant to society, such as malaria incidence, defined at the appropriate regional and local scales."

The study used a combined epidemiological and hydrological model of malaria transmission developed earlier by Eltahir and former graduate student Arne Bomblies, now an assistant professor at the University of Vermont. The model uses detailed information about rainfall, temperature, wind, topography and soils at the village scale.

It simulates mosquito behavior by tracking the location, biting, infective status and reproduction cycle of individual female mosquitoes on an hourly basis and includes variables describing humans and other animals that serve as sources of blood meals for mosquitos. Eltahir and Bomblies tested the model using extensive field data gathered from representative villages in Niger over two years, including adult mosquito abundance, observations of pools, and meteorological and soil-moisture measurements.

To incorporate regional data into the model, Yamana took daily satellite data and broke it down into hourly increments so the model could use hourly rainfall to simulate formation of breeding pools. She established baseline current climate conditions by feeding the model satellite data for five climate zones — starting at the southern fringes of the Sahara and moving south through the Sahel transitional zone into the wetter regions of the Guinean coast.

She then repeated the simulations using long-term temperature and rainfall predictions taken from global climate models, which predict a temperature increase in West Africa from 2 to 6 degrees Celsius by the end of the century, and rainfall changes ranging from large reductions to moderate or large increases. Working on the assumption that future rainfall levels will fall somewhere in between, Yamana and Eltahir identified the rainfall and temperature changes that would create the best and worst environmental suitability for malaria in each of the five zones.

They found that on the southern border of the Sahara, temperatures will become too hot for the survival of Anopheles funestus and Anopheles gambiae sensu lato, the most common malaria-carrying species in Africa. As a result, any likely changes in rainfall would have only a minor impact on malaria.

On the other extreme, hotter temperatures in the southern zone close to the Guinean coast will speed the development of the malaria parasite, improving environmental suitability for malaria regardless of changes in rainfall. However, this area is already heavily saturated with the disease, so the impact is expected to be minimal unless this region experiences an influx of people from the north.

Between these two extremes, the opposing impacts of warming temperature and increasing rainfall are likely to cancel each other, minimizing the impact on disease transmission along the transitional Sahel zone.

The researchers point out that their study does not take into account possible changes in population, migration, economics, health care and other socioeconomic factors.

"Many countries in this region are very underdeveloped and people are much more vulnerable to changes in the environment than people in more developed areas," Yamana says. "If these countries become fully developed and are no longer vulnerable to vector-borne diseases, or malaria is completely eradicated, that would be fantastic news. But I don't think we can count on either of these things happening in the near future."

The study was funded by the National Science Foundation.

Written by Denise Brehm, MIT News Office

Denise Brehm | EurekAlert!
Further information:
http://www.mit.edu

More articles from Studies and Analyses:

nachricht Some brain tumors may respond to immunotherapy, new study suggests
11.12.2018 | Columbia University Irving Medical Center

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>