Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows importance of exercise for those at special risk for Alzheimer's

19.11.2010
Participants included individuals who carry a high-risk gene

Physical activity promotes changes in the brain that may protect high-risk individuals against cognitive decline, including development of Alzheimer's disease, according to a new study done at the University of Wisconsin-Milwaukee (UWM).

J. Carson Smith, an assistant professor of health sciences, included in the study both people who carry a high-risk gene for Alzheimer's disease, and other healthy older adults without the gene.

"Our study suggests that if you are at genetic risk for Alzheimer's disease, the benefits of exercise to your brain function might be even greater than for those who do not have that genetic risk," says Smith.

While evidence already shows that physical activity is associated with maintenance of cognitive function across a life span, most of this research has been done with healthy people, without any consideration of their level of risk for Alzheimer's, says Smith.

A team of researchers compared brain activation during memory processing in four separate groups of healthy 65- to 85-years-olds. The level of risk was defined by whether an individual carried the apolipoprotein E-epsilon4 (APOE–ϵ4) allele. Physical activity status was defined by how much and how often the participants reported physical activity (PA). The study divided subjects into Low Risk/Low PA, Low Risk/High PA, High Risk/Low PA and High Risk/High PA.

Functional magnetic resonance imaging (fMRI) was used to measure brain activation of participants while they performed a mental task involving discriminating among famous people. This test is very useful, says Smith, because it engages a wide network called the semantic memory system, with activation occurring in 15 different functional regions of the brain.

"When a person thinks about people – for example, Frank Sinatra or Lady Gaga – that involves several lobes of the brain," explains Smith.

In the study groups of those carrying the gene, individuals who exercised showed greater brain activity in memory-related regions than those who were sedentary.

Perhaps even more intriguing, physically active people with the gene had greater brain activity than those who were physically active but not gene carriers.

There are many physiological reasons why this could be happening, Smith says. "For example, people with this increased activation might be compensating for some underlying neurological event that is involved in cognitive decline.". "Using more areas of their brain may serve as a protective function, even in the face of disease processes."

The study's collaborating institutions include the Cleveland Clinic, Marquette University, Wayne State University and Rosalind Franklin University of Medicine and Science. It was funded by the National Institutes of Health and the National Institute on Aging.

The study will be published in Vol. 54 (January 2011) of the journal NeuroImage, but is now available online.

Smith's current research builds on this study. He and his team are conducting a new study testing the before-and-after effects of a structured exercise program on brain function. The study includes patients diagnosed with mild cognitive impairment or early Alzheimer's disease, as well as a healthy control group.

For more information on this ongoing study, visit http://www.exerciseforbrainhealth.com/

J. Carson Smith | EurekAlert!
Further information:
http://www.uwm.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>