Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows Experiments Underestimate Plant Responses to Climate Change

03.05.2012
Experiments may dramatically underestimate how plants will respond to climate change in the future.

That’s the conclusion of an analysis of 50 plant studies on four continents, published this week in an advance online issue of the journal Nature, which found that shifts in the timing of flowering and leafing in plants due to global warming appear to be much greater than estimated by warming experiments.

“This suggests that predicted ecosystem changes—including continuing advances in the start of spring across much of the globe—may be far greater than current estimates based on data from experiments,” said Elizabeth Wolkovich, an ecologist at the University of British Columbia who led an interdisciplinary team of scientists that conducted the study while she was a postdoctoral fellow at the University of California, San Diego.

“These findings have extensive consequences for predictions of species diversity, ecosystem services and global models of future change,” said Elsa Cleland, an assistant professor of biology at UC San Diego and senior author of the study, which involved 22 institutions in Canada, Sweden, Switzerland, the U.K. and the U.S. “Long-term records appear to be converging on a consistent average response to climate change, but future plant and ecosystem responses to warming may be much higher than previously estimated from experimental data.”

Predicting plant responses to climate change has important consequences for human water supply, pollination of crops and the overall health of ecosystems. Shifts in the timing of annual plant events—which biologists call “phenology”—are some of the most consistent and visible responses to climate change.

Long-term historical records show that many plant species have shifted their leafing and flowering earlier, in step with warming temperatures over recent decades. Because historical records are not available in most locations and climate change may produce temperatures higher than previously recorded, however, ecologists often rely on experiments that warm small field plots to estimate plant responses to temperature and project future conditions.

With support from the National Center for Ecological Analysis and Synthesis, a research center funded by the National Science Foundation, the State of California and the University of California, Santa Barbara, the scientists created new global databases of plant phenology to compare the sensitivity of plants to temperature— that is, how much plants shift their timing of leafing and flowering with warming. These were calculated from experiments and then compared to long-term monitoring records.

Wolkovich and her colleagues found that experiments underpredicted plant phenological responses to temperature by at least fourfold compared to long-term records. Long-term historical records consistently showed that leafing and flowering will advance, on average, 5 to 6 days per degree Celsius—a finding that was strikingly consistent across species and datasets.

“These results are important because we rely heavily on these experiments to predict what will happen to communities and ecosystems in the future,” said Ben Cook, a climatologist at the NASA Goddard Institute for Space Studies and Columbia University, who helped bring together the research team.

Wolkovich said a number of factors could explain this discrepancy—including additional effects of climate change not mirrored by warming experiments, or specific aspects of the experimental design such as the degree of warming. But her team’s analyses found that within the range of temperature increases considered, responses were not noticeably affected by the degree of warming or the number of years the study spanned. Instead, the discrepancy may be driven by exactly how researchers manipulate temperatures and how accurately they measure them.

“Researchers use a variety of methods to increase temperatures in the field—including heating cables in the soil, small greenhouse-like structures and heating above plants,” explains Wolkovich. “We found that plant sensitivities to temperature vary with the design of the experiment, with above plant warming producing consistent advances in flowering.”
Additionally, because the comparison was based on a metric that considered plant responses per degree Celsius of temperature change, experiments that overestimate their temperature increases could underestimate the change in leafing and flowering per degree of warming. The difference in estimated responses from experiments versus long-term records has important consequences for predictions of species diversity, ecosystem services and global models of future change.

“Continuing efforts to improve the design of warming experiments while maintaining and extending long-term historical monitoring will be critical to pinpointing the cause of the mismatch,” said Wolkovich. “These efforts will yield a more accurate picture of future plant communities and ecosystems with continuing climate change.”

The study was funded by the National Science Foundation, the State of California and the University of California, Santa Barbara.

Media Contact

Kim McDonald, 858-534-7572, kmcdonald@ucsd.edu
Elsa Cleland, 858-699-9928, ecleland@ucsd.edu

Kim McDonald | EurekAlert!
Further information:
http://ucsdnews.ucsd.edu/pressreleases/study_shows_experiments_underestimate_plant_responses_to_climate_change/

More articles from Studies and Analyses:

nachricht Drought hits rivers first and more strongly than agriculture
06.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>