Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how daughter is different from mother

19.08.2008
The mother-daughter relationship can be difficult to understand. Why are the two so different? Now a Northwestern University study shows how this happens. In yeast cells, that is.

A research team has discovered a new mechanism for cell fate determination -- how one cell, the daughter, becomes dramatically different from the mother, even though they have the same genetic material. The study shows why mothers and daughters differ in how they express their genes.

The results of this research will be published in the Aug. 19 issue of the journal PLoS Biology.

By studying yeast, whose entire genome is known, scientists can learn the basics of cell division and apply that knowledge to the human system. Many of the fundamental mechanisms for cell division in yeast are conserved, or very similar, in mammals; many of the proteins involved in human disease are related to proteins that are involved in yeast cell division.

The new knowledge about cell fate determination could lead to a better understanding of healthy human cells, what goes awry in cancer cells and how human stem cells and germ cells work.

"Cancer may reflect a partial and aberrant loss of differentiated character, in which cells that were formerly specified to perform a specific task 'forget' that, and become more like the rapidly dividing stem cells from which they came," said Eric L. Weiss, assistant professor of biochemistry, molecular biology and cell biology in Northwestern's Weinberg College of Arts and Sciences. Weiss led the research team, which included scientists from the Massachusetts Institute of Technology.

"Understanding how differentiated states are specified might help us figure out how to remind cancer cells to go back to their original tasks or fates -- or, more likely, die."

When a yeast cell divides it produces a mother cell and a smaller, different daughter cell. The daughter cell is the one that actually performs the final act of separation, cutting its connection to the mother cell. And the daughter takes longer than the mother to begin the next cycle of division, since it needs time to grow up.

The key to the researchers' discovery of how this differentiation works is the gene regulator Ace2, a protein that directly turns genes on. The researchers found that the protein gets trapped in the nucleus of the daughter cell, turning on genes that make daughter different from mother.

The team is the first to show that the regulator is trapped because a signaling pathway (a protein kinase called Cbk1) turns on and blocks Ace2 from interacting with the cell's nuclear export machinery. Without this specific block, the machinery would move the regulator out of the nucleus, and the daughter cell would be more motherlike -- not as different.

"Daughter-cell gene expression is special, and now we know why," said Weiss.

The researchers also found that the differentiation of the mother cell and daughter cell -- this trapping of the regulator in the daughter nucleus -- occurs while the two cells are still connected.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>