Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows How The Brain Responds To Deceptive Advertising

29.02.2012
Several specific regions of our brains are activated in a two-part process when we are exposed to deceptive advertising, according to new research conducted by a North Carolina State University professor. The work opens the door to further research that could help us understand how brain injury and aging may affect our susceptibility to fraud or misleading marketing.

The study utilized functional magnetic resonance imaging (fMRI) to capture images of the brain while study participants were shown a series of print advertisements. The fMRI images allowed researchers to determine how consumers’ brains respond to potentially deceptive advertising. “We did not instruct participants to evaluate the ads. We wanted to mimic the passive exposure to advertising that we all experience every day,” says Dr. Stacy Wood, Langdon Distinguished Professor of Marketing at NC State and co-author of a paper describing the research.


The contrast in these images shows greater precuneus activation for "highly deceptive" than "moderately deceptive" ads.

The contrast in these images shows greater precuneus activation for "highly deceptive" than "moderately deceptive" ads.

Participants were exposed to three pre-tested advertisements that were deemed “highly believable,” “moderately deceptive” or “highly deceptive.” The ads were also pre-tested to ensure that they were for products that consumers found equally interesting and desirable – leaving the degree of deception as the only significant variable.

“We found that people have a two-stage process they go through when confronted with moderately or highly deceptive ads,” Wood says.

During the first stage, researchers saw increased activity in the precuneus – a part of the brain associated with focusing conscious attention. “We found that the more deceptive an advertisement is, the more you are drawn to it,” Wood says, “much as our attention is drawn to potential threats in our environment.” Specifically, in this study, the more deceptive an ad was, the more precuneus activity was observed.

During the second stage, researchers saw more activity in the superior temporal sulcus (STS) and temporoparietal junction (TPJ) regions of the brain. This suggests increased “theory-of-mind” (ToM) reasoning. ToM is a type of processing that allows us to distinguish our wants and needs from those of others, particularly as this applies to intuiting the intentions of other people. In this case, it appears to indicate that participants were trying to determine the truth behind the claims in the potentially deceptive advertisements.

“What’s interesting here is that the moderately deceptive ads cause more activity during this second stage,” Wood says. That may be because highly deceptive ads are screened out more quickly and discarded as not meriting further attention.

Overall, when looking at both stages of brain response, researchers found there was greater brain activation when participants were exposed to moderately deceptive ads. But, if moderately deceptive ads stimulate more brain activity, does that make us more susceptible to the sales pitch in ads that trigger just a pinch of skepticism?

Apparently not. In a follow-up, behavioral component of the study, researchers interfered with the ToM stage, making it more difficult for participants to determine the intention behind the ads. As a result, participants more frequently believed moderately deceptive advertising. This suggests that the second stage is an important step that helps protect consumers by allowing them to better discriminate and screen out deceptive ads.

“Now that we’ve identified these stages of brain response, it may help future researchers identify underlying neural reasons why some populations are more prone to fall prey to deceptive ads,” Wood says. “For example, if these regions of the brain are likely to be affected by aging, it may explain why older adults are more vulnerable to fraud or deceptive advertising. Or how might concussive brain injuries, such as those seen in some sports, affect our long-term discrimination in making good consumer choices?”

The paper, “Suspicious Minds: An fMRI Investigation of How Consumers Perceive Deception in the Marketplace,” was co-authored by Wood, Dr. Adam Craig of USF (lead researcher), Dr. Yuliya Loureiro of Fordham and Dr. Jennifer Vendemia of USC. The paper is published online in the Journal of Marketing Research.

-shipman-

Note to Editors: The study abstract follows.

“Suspicious Minds: An fMRI Investigation of How Consumers Perceive Deception in the Marketplace”

Authors: Adam W. Craig, University of South Florida; Yuliya Komarova Loureiro, Fordham University; Stacy Wood, North Carolina State University; Jennifer M.C. Vendemia, University of South Carolina.

Published: online in Journal of Marketing Research

Abstract: In processing advertisements, consumers must decide what to believe and what is meant to deceive. Here, we use fMRI data to explore consumers’ neural response to product claims with differing levels of perceived deceptiveness. Specifically, we look for brain activation in areas associated with Theory-of-Mind (ToM) reasoning. Our fMRI data provide unique and intriguing evidence identifying two different stages of brain activity: precuneus activation at earlier stages, and superior temporal sulcus and temporo-parietal junction activation at later stages. Additionally, at the earliest stage of processing, increases in affect-oriented activation (amygdala) are associated with advertising claims perceived as more deceptive. Interestingly, across the two stages, we observe disproportionately greater brain activity associated with claims that are moderately deceptive. However, the fMRI data alone is insufficient to understand what this may mean for consumers and marketers. Thus, we conducted a behavioral study to examine whether increased activation across these stages represents a positive “careful discrimination” response to deception or the negative potential for consumers to be misled.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu
http://news.ncsu.edu/releases/wmswooddeceptive/

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>