Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows a solitary mutation can destroy critical 'window' of early brain development

24.06.2013
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have shown in animal models that brain damage caused by the loss of a single copy of a gene during very early childhood development can cause a lifetime of behavioral and intellectual problems.

The study, published this week in the Journal of Neuroscience, sheds new light on the early development of neural circuits in the cortex, the part of the brain responsible for functions such as sensory perception, planning and decision-making.

The research also pinpoints the mechanism responsible for the disruption of what are known as "windows of plasticity" that contribute to the refinement of the neural connections that broadly shape brain development and the maturing of perception, language, and cognitive abilities.

The key to normal development of these abilities is that the neural connections in the brain cortex—the synapses—mature at the right time.

In an earlier study, the team, led by TSRI Associate Professor Gavin Rumbaugh, found that in mice missing a single copy of the vital gene, certain synapses develop prematurely within the first few weeks after birth. This accelerated maturation dramatically expands the process known as "excitability"—how often brain cells fire—in the hippocampus, a part of the brain critical for memory. The delicate balance between excitability and inhibition is especially critical during early developmental periods. However, it remained a mystery how early maturation of brain circuits could lead to lifelong cognitive and behavioral problems.

The current study shows in mice that the interruption of the synapse-regulating gene known as SYNGAP1—which can cause a devastating form of intellectual disability and increase the risk for developing autism in humans—induces early functional maturation of neural connections in two areas of the cortex. The influence of this disruption is widespread throughout the developing brain and appears to degrade the duration of these critical windows of plasticity.

"In this study, we were able to directly connect early maturation of synapses to the loss of an important plasticity window in the cortex," Rumbaugh said. "Early maturation of synapses appears to make the brain less plastic at critical times in development. Children with these mutations appear to have brains that were built incorrectly from the ground up."

The accelerated maturation also appeared to occur surprisingly early in the developing cortex. That, Rumbaugh added, would correspond to the first two years of a child's life, when the brain is expanding rapidly. "Our goal now is to figure out a way to prevent the damage caused by SYNGAP1 mutations. We would be more likely to help that child if we could intervene very early on—before the mutation has done its damage," he said.

The first author of the study, "SYNGAP1 Links the Maturation Rate of Excitatory Synapses to the Duration of Critical-Period Synaptic Plasticity," is James P. Clement of TSRI. Other authors include Emin D. Ozkan, Massimiliano Aceti and Courtney A. Miller, also of TSRI. For more information, see http://www.jneurosci.org/content/33/25/10447.full

This work was supported by the National Institute for Neurological Disorders and Stroke (grant R01NS064079), the National Institute for Mental Health (grant R01MH096847) and the National Institute for Drug Abuse (grants R01 DA034116 and R03 DA033499).

Eric Sauter | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>