Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals stem cells in a human parasite

26.02.2013
From the point of view of its ultimate (human) host, the parasitic flatworm Schistosoma mansoni has a gruesome way of life. It hatches in feces-tainted water, grows into a larva in the body of a snail and then burrows through human skin to take up residence in the veins. Once there, it grows into an adult, mates and, if it’s female, starts laying eggs. It can remain in the body for decades.

A new study offers insight into the cellular operations that give this flatworm its extraordinary staying power. The researchers, from the University of Illinois, demonstrated for the first time that S. mansoni harbors adult, non-sexual stem cells that can migrate to various parts of its body and replenish tissues. Their report appears in the journal Nature.


The researchers discovered that Schistosoma mansoni harbors a population of non-sexual stem cells (yellow dots dispersed throughout the organism) that replenish its tissues and contribute to its ability to live in its host for decades. | Photo by Phil Newmark

According to the World Health Organization, more than 230 million people are in need of treatment for Schistosoma infections every year. Most live in impoverished areas with little or no access to clean water. Infection with the worm (also known as a blood fluke) can lead to damaging inflammation spurred by the presence of the worm’s eggs in human organs and tissues.

“The female lays eggs more or less continuously, on the order of hundreds of eggs per day,” said U. of I. cell and developmental biology professor and Howard Hughes Medical Institute Investigator Phillip Newmark, who led the study with postdoctoral researcher James J. Collins III.

“The eggs that don’t get excreted in the feces to continue the life cycle actually become embedded inside host tissues, typically the liver, and those eggs trigger a massive inflammatory response that leads to tissue damage.”

Children are especially vulnerable to the effects of infection, in some cases experiencing delays in growth and brain development as a result of chronic inflammation brought on by the parasites.

The new study began with an insight stemming from years of work on a different flatworm, the planarian, in Newmark’s lab. Collins thought that schistosomes might make use of the same kinds of stem cells (called neoblasts in planarians) that allow planarians to regenerate new body parts and organs from even tiny fragments of living tissue.

“It just stood to reason that since schistosomes, like planaria, live so long that they must have a comparable type of system,” Collins said. “And since these flatworms are related, it made sense that they would have similar types of cells. But it had never been shown.”

In a series of experiments, Collins found that the schistosomes were loaded with proliferating cells that looked and behaved like planarian neoblasts, the cells that give them their amazing powers of regeneration. Like neoblasts, the undifferentiated cells in the schistosomes lived in the mesenchyme, a kind of loose connective tissue that surrounds the organs. And like neoblasts, these cells duplicated their DNA and divided to form two “daughter” cells, one of which copied its DNA again, a process that normally precedes cell division.

“Stem cells do two things,” Newmark said. “They divide to make more stem cells and they give rise to cells that can differentiate.”

Collins had labeled the cells with fluorescent markers. This allowed him to watch how they behaved. He noted that over the course of a few days, some of the labeled cells migrated into the gut or muscle, to become part of those tissues.

“We label the cells when they’re born and then we see what they grow up to become,” Collins said. “This is not conclusive evidence that these cells are equivalent to the planarian neoblasts, but it is consistent with the hypothesis that they are.”

The researchers went deeper, determining which genes were turned on or off, up or down in the proliferating cells as compared with the non-dividing cells. They identified a gene in the proliferating cells that coded for a growth factor receptor very similar to one found in planarians. When the researchers switched off the parasite’s ability to make use of this gene (using a technique called RNA interference in worms grown in the lab), the proliferating cells gradually died out.

“We postulated that these cells are important for the longevity of the parasite,” Collins said. “Now we can start asking which genes regulate these cells.”

“We started with the big question: How does a simple parasite survive in a host for decades?” Newmark said. “That implies that it has ways of repairing and maintaining its tissues. This study gives us insight into the really interesting biology of these parasites, and it may also open up new doors for making that life cycle a lot shorter.”

Diana Yates | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>