Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals stem cells in a human parasite

26.02.2013
From the point of view of its ultimate (human) host, the parasitic flatworm Schistosoma mansoni has a gruesome way of life. It hatches in feces-tainted water, grows into a larva in the body of a snail and then burrows through human skin to take up residence in the veins. Once there, it grows into an adult, mates and, if it’s female, starts laying eggs. It can remain in the body for decades.

A new study offers insight into the cellular operations that give this flatworm its extraordinary staying power. The researchers, from the University of Illinois, demonstrated for the first time that S. mansoni harbors adult, non-sexual stem cells that can migrate to various parts of its body and replenish tissues. Their report appears in the journal Nature.


The researchers discovered that Schistosoma mansoni harbors a population of non-sexual stem cells (yellow dots dispersed throughout the organism) that replenish its tissues and contribute to its ability to live in its host for decades. | Photo by Phil Newmark

According to the World Health Organization, more than 230 million people are in need of treatment for Schistosoma infections every year. Most live in impoverished areas with little or no access to clean water. Infection with the worm (also known as a blood fluke) can lead to damaging inflammation spurred by the presence of the worm’s eggs in human organs and tissues.

“The female lays eggs more or less continuously, on the order of hundreds of eggs per day,” said U. of I. cell and developmental biology professor and Howard Hughes Medical Institute Investigator Phillip Newmark, who led the study with postdoctoral researcher James J. Collins III.

“The eggs that don’t get excreted in the feces to continue the life cycle actually become embedded inside host tissues, typically the liver, and those eggs trigger a massive inflammatory response that leads to tissue damage.”

Children are especially vulnerable to the effects of infection, in some cases experiencing delays in growth and brain development as a result of chronic inflammation brought on by the parasites.

The new study began with an insight stemming from years of work on a different flatworm, the planarian, in Newmark’s lab. Collins thought that schistosomes might make use of the same kinds of stem cells (called neoblasts in planarians) that allow planarians to regenerate new body parts and organs from even tiny fragments of living tissue.

“It just stood to reason that since schistosomes, like planaria, live so long that they must have a comparable type of system,” Collins said. “And since these flatworms are related, it made sense that they would have similar types of cells. But it had never been shown.”

In a series of experiments, Collins found that the schistosomes were loaded with proliferating cells that looked and behaved like planarian neoblasts, the cells that give them their amazing powers of regeneration. Like neoblasts, the undifferentiated cells in the schistosomes lived in the mesenchyme, a kind of loose connective tissue that surrounds the organs. And like neoblasts, these cells duplicated their DNA and divided to form two “daughter” cells, one of which copied its DNA again, a process that normally precedes cell division.

“Stem cells do two things,” Newmark said. “They divide to make more stem cells and they give rise to cells that can differentiate.”

Collins had labeled the cells with fluorescent markers. This allowed him to watch how they behaved. He noted that over the course of a few days, some of the labeled cells migrated into the gut or muscle, to become part of those tissues.

“We label the cells when they’re born and then we see what they grow up to become,” Collins said. “This is not conclusive evidence that these cells are equivalent to the planarian neoblasts, but it is consistent with the hypothesis that they are.”

The researchers went deeper, determining which genes were turned on or off, up or down in the proliferating cells as compared with the non-dividing cells. They identified a gene in the proliferating cells that coded for a growth factor receptor very similar to one found in planarians. When the researchers switched off the parasite’s ability to make use of this gene (using a technique called RNA interference in worms grown in the lab), the proliferating cells gradually died out.

“We postulated that these cells are important for the longevity of the parasite,” Collins said. “Now we can start asking which genes regulate these cells.”

“We started with the big question: How does a simple parasite survive in a host for decades?” Newmark said. “That implies that it has ways of repairing and maintaining its tissues. This study gives us insight into the really interesting biology of these parasites, and it may also open up new doors for making that life cycle a lot shorter.”

Diana Yates | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>