Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reports seizure-freedom in 68 percent of juvenile myoclonic epilepsy patients

06.06.2012
Seizure severity and antiepileptic drug polytherapy among predictors of poor seizure outcomes

A 25-year follow-up study reveals that 68% of patients with juvenile myoclonic epilepsy (JME) became seizure-free, with nearly 30% no longer needing antiepileptic drug (AED) treatment. Findings published today in Epilepsia, a journal of the International League Against Epilepsy (ILAE), report that the occurrence of generalized tonic-clonic seizures preceded by bilateral myoclonic seizures, and AED polytherapy significantly predicted poor long-term seizure outcome.

Patients with JME experience "jerking" of the arms, shoulders, and sometimes the legs. Previous evidence suggests that JME is a common type of epilepsy (in up to 11% of people with epilepsy), occurring more frequently in females than in males, and with onset typically in adolescence.. There is still much debate among experts over the long-term outcome of JME, and about which factors predict seizure outcome.

To further investigate JME outcomes and predictive factors, Dr. Felix Schneider and colleagues from the Epilepsy Center at the University of Greifswald in Germany studied data from 12 male and 19 female patients with JME. All participants had a minimum of 25 years follow-up which included review of medical records, and telephone or in-person interviews.

Sixty-eight percent of the 31 JME patients became free of seizures, and 28% discontinued AED treatment due to seizure-freedom. Significant predictors of poor long-term seizure outcome included: occurrence of generalized tonic-clonic seizures (GTCS - formerly known as grand mal seizures) that affect the entire brain and which are preceded by bilateral myoclonic seizures (abnormal movements on both sides of the body and a regimen of AED polytherapy.

Researchers also determined that remission of GTCS using AED therapy significantly increased the possibility of complete seizure-freedom. However, once AED therapy is discontinued, the occurrence of photoparoxysmal responses (brain discharges in response to brief flashes of light) significantly predicted an increased risk of seizure recurrence.

"Our findings confirm the feasibility of personalized treatment of the individual JME patient," concludes Dr. Schneider. "Life-long AED therapy is not necessarily required in many patients to maintain seizure freedom. Understanding the predictors for successful long-term seizure outcome will aid clinicians in their treatment options for those with JME."

This study is published in Epilepsia. Media wishing to receive a PDF of this article may contact healthnews@wiley.com.

Full citation:"Predictors for Long-Term Seizure Outcome in Juvenile Myoclonic Epilepsy: 25-63 Years Of Follow-Up." Julia Geithner, Felix Schneider, Zhong Wang, Julia Berneiser, Rosemarie Herzer, Christof Kessler and Uwe Runge. Epilepsia; Published Online: June 6, 2012 (DOI: 10.1111/j.1528-1167.2012.03526.x).

URL upon publication: http://doi.wiley.com/10.1111/j.1528-1167.2012.03526.x
Epilepsia is the leading, most authoritative source for current clinical and research results on all aspects of epilepsy. As the journal of the International League Against Epilepsy, subscribers every month will review scientific evidence and clinical methodology in: clinical neurology, neurophysiology, molecular biology, neuroimaging, neurochemistry, neurosurgery, pharmacology, neuroepidemiology, and therapeutic trials. For more information, please visit http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1528-1167.

The International League Against Epilepsy (ILAE) is the world's preeminent association of physicians and health professionals working toward a world where no person's life is limited by epilepsy. Since 1909 the ILAE has provided educational and research resources that are essential in understanding, diagnosing and treating persons with epilepsy. The ILAE supports health professionals, patients, and their care providers, governments, and the general public worldwide by advancing knowledge of epilepsy.

Wiley-Blackwell is the international scientific, technical, medical, and scholarly publishing business of John Wiley & Sons, with strengths in every major academic and professional field and partnerships with many of the world's leading societies. Wiley-Blackwell publishes nearly 1,500 peer-reviewed journals and 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols. For more information, please visit www.wileyblackwell.com or our new online platform, Wiley Online Library (wileyonlinelibrary.com), one of the world's most extensive multidisciplinary collections of online resources, covering life, health, social and physical sciences, and humanities.

Dawn Peters | EurekAlert!
Further information:
http://www.wiley.com

Further reports about: Epilepsia Epilepsy GTCS Online Broker health professionals seizure

More articles from Studies and Analyses:

nachricht Deep Brain Stimulation Provides Sustained Relief for Severe Depression
19.03.2019 | Universitätsklinikum Freiburg

nachricht AI study of risk factors in type 1 diabetes
06.03.2019 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>