Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study raises safety concerns about experimental cancer approach

26.01.2011
Widespread vascular tumors, massive hemorrhage and death reported in mice

A study by researchers at Washington University School of Medicine in St. Louis has raised safety concerns about an investigational approach to treating cancer.

The strategy takes aim at a key signaling pathway, called Notch, involved in forming new blood vessels that feed tumor growth. When researchers targeted the Notch1 signaling pathway in mice, the animals developed vascular tumors, primarily in the liver, which led to massive hemorrhages that caused their death.

Their findings are reported online Jan. 25 in The Journal of Clinical Investigation and will appear in the journal’s February issue.

A number of anti-Notch therapies now are being evaluated in preclinical and early clinical trials for cancer. They target Notch1 as well as the three other signaling pathways in the Notch receptor family. The current research did not study any of these specific therapies in mice but instead focused on the potential side effects of chronically disrupting the Notch1 signal in individual cells.

“Our results suggest that anti-Notch1 strategies are bound to fail,” says Raphael Kopan, PhD, professor of developmental biology and of medicine at the School of Medicine. “Without the Notch1 signal, cells in the vascular system grow uncontrollably and produce enlarged, weakened blood vessels. Eventually, the pressure within those vessels exceeds their capacity to hold blood, and they rupture, causing a dramatic loss of blood pressure, heart attack and death.”

Notch plays a crucial role in determining a cell’s fate and is active throughout a person’s life. In recent years, the pathway has emerged as a target to block the formation of blood vessels – called angiogenesis – in solid tumors.

Kopan says he is not advising that anti-Notch clinical trials already under way be halted. These early trials generally involve short-term use of the drugs and are designed to assess safety. However, he says patients who take anti-Notch therapies for extended periods should receive MRI scans to check for liver abnormalities.

In the new research, Kopan and his colleagues engineered mice to develop random but progressive disruptions in the Notch1 gene in cells that depend on its signal. This model mimics a scenario that may occur in cancer patients receiving anti-Notch therapies for extended time periods.

Then, the researchers monitored the mice for any potential negative consequences and compared the outcomes of 41 mutant mice to 45 normal “control” mice.

Within several months, the experimental mice developed opaque corneas, which were already known to be associated with a loss of Notch1 signaling.

Otherwise, for more than a year, the genetically engineered mice appeared to grow and develop normally. Then, for no apparent reason, they started dying suddenly.

The researchers conducted autopsies on 13 pairs of experimental and control mice. They noted vascular tumors and/or abnormal collections of blood vessels called hemangiomas in 85 percent (11/13) of the mutant mice, primarily in the liver. Some of the mice developed additional tumors in the uterus, colon, lymph nodes, skin, ovary and testis.

None of the control animals developed vascular tumors or hemangiomas. On average, the experimental mice lived 420 days compared with 600 days for the control mice.

“It is highly unlikely that mice in the experimental group would randomly die so soon,” Kopan explains. “When we examined the mice, we found evidence of ruptured blood vessels and pooling of blood in their body cavities along with an odd-looking liver pathology.”

The investigators then conducted MRI scans on living experimental mice. They noted that their livers had holes that looked “like a big Swiss cheese instead of having a dense, reddish, featureless landscape,” Kopan says. “This is highly abnormal.”

All the evidence pointed to abnormalities in the endothelial system in the experimental mice. Endothelial cells line blood vessels, allowing them to expand and contract as blood is pumped through the body. For reasons the researchers don’t yet understand, endothelial cells in the liver were most affected. Ninety percent of the proliferating liver endothelial cells in the experimental mice had lost the Notch1 signal.

Notch plays many roles in the body, depending on the cellular context. In some instances, Notch can spur tumor growth and in others suppress it. The researchers suspect that loss of the Notch1 signal in the experimental mice releases the brakes on endothelial cell division, allowing the cells to proliferate uncontrollably, particularly in the liver.

Anti-notch compounds now in preclinical and clinical trials include gamma secretase inhibitors, originally developed to treat Alzheimer’s disease. These drugs block an enzyme all Notch receptors rely on. Other drugs in the pipeline are called DLL4 antibodies, which also disrupt Notch signaling and blood vessel formation. Anti-Notch1 antibodies are also being developed.

Kopan, however, says he is not optimistic about the prospects for any of them.

“The therapeutic window for any kind of anti-Notch1 therapy – that’s the dosage of a drug that is both safe and effective – is extremely small, perhaps even nonexistent, for these compounds in their current form," he says. "We need to do additional research to try to find out how we can open that window."

The research was funded by the National Institutes of Health, the National Cancer Institute and the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in St. Louis.

Liu Z, Turkoz A, Jackson EN, Corbo JC, Engelbach JA, Garbow JR, Piwnica-Worms DR, Kopan R. Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. The Journal of Clinical Investigation. February 2011.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu
http://news.wustl.edu/news/Pages/21788.aspx

More articles from Studies and Analyses:

nachricht Drought hits rivers first and more strongly than agriculture
06.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Glacial engineering could limit sea-level rise, if we get our emissions under control

20.09.2018 | Earth Sciences

Warning against hubris in CO2 removal

20.09.2018 | Earth Sciences

Halfway mark for NOEMA, the super-telescope under construction

20.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>