Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study predicts effect of global warming on spring flowers

21.09.2009
An international study involving Monash University mathematician Dr Malcolm Clark has been used to demonstrate the impact of global warming and to predict the effect further warming will have on plant life.

The study, published in the International Journal of Climatology, predicts a difference in flowering times of certain plants in certain climates by as much as 50 days by the year 2080.

The study, by Dr Malcolm Clark, an Adjunct Research Fellow at Monash University's School of Mathematical Sciences and Professor Roy Thompson, a geophysicist at the University of Edinburgh in Scotland, investigated the possibilities of flowering spring plants blooming in the depths of winter as the plants respond to the effects of global warming.

The study is based on the facts that plants control the timing of flowering by adapting to the local weather and climate and that throughout the past century global warming, driven by ever rising atmospheric carbon dioxide concentrations, has resulted in local climate changes which are likely to steadily increase.

"Already there is a great deal of observational evidence of regional changes in climate associated with global warming," Dr Clark said. "We have not only seen an earlier break up of ice on rivers and melting glaciers, but earlier flowering of plants. This new model allows us to refine predictions of the future impact of warming on plant and animal life across much of the world."

Dr Clark and Professor Thompson worked from a wealth of old records from the Royal Botanic Garden Edinburgh, which started in 1850. They also analysed records of Edinburgh's climate from records dating back to 1775. With this information they investigated the responses of 79 species of plant to air temperatures.

Using this data, they established the relationship between air temperature and first flowering date and have used their new statistical model to predict likely changes in spring flowering in Scotland based on three potential global warming scenarios. For every 1 o C that the climate warms they predict that spring flowering will begin approximately 11 days earlier. For an increasingly oceanic climate (greater winter than summer warming) their model predicts shifts in the botanical season ranging between 16 days at the start of spring and 12 days at the end of spring. For an increasingly continental climate predictions range between 7 days at the start of spring and 11 days at the end of spring.

Clark and Thompson checked the results of their statistical model with other data sets from across the world, indicating that their results are not limited to one country. "Although the study is based on plant life in Scotland, our phenological models apply across regions spanning hundreds of thousands of square kilometres," Dr Clark said.

Using their results Dr Clark and Professor Thompson have been able to construct a global map demonstrating 'desynchronisation' of plant and animal life in the year 2080. The map shows that maritime climates including Western Europe, the American Atlantic coast, New Zealand, Chile and North Africa will be the greatest effected as the botanical calendar will move strongly out of sync with the seasons with temperature-sensitive plants flowering up to 50 days earlier than now, with significant ecological repercussions.

For more information or to arrange an interview, contact Samantha Blair Media & Communications +61 3 9903 4841 or 0439 013 951.

Samantha Blair | EurekAlert!
Further information:
http://www.monash.edu.au

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle

23.07.2018 | Earth Sciences

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

VideoLinks
Science & Research
Overview of more VideoLinks >>>