Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of phytoremediation benefits of 86 indoor plants published

24.06.2011
Japanese royal fern tops list for formaldehyde removal effectiveness

Formaldehyde is a major contaminant of indoor air, originating from particle board, carpet, window coverings, paper products, tobacco smoke, and other sources. Indoor volatile organic compounds (VOCs) such as formaldehyde can contribute to allergies, asthma, headaches, and a condition known as ''sick building syndrome". The concern is widespread; a 2002 report from the World Health Organization estimated that undesirable indoor volatiles represent a serious health problem that is responsible for more than 1.6 million deaths per year and 2.7% of the global burden of disease.

Scientists have long known the benefits of using plants to absorb and metabolize gaseous formaldehyde. Phytoremediation—the use of green plants to remove pollutants or render them harmless—is seen as a potentially viable and environmentally significant means of improving the indoor air quality in homes and offices. A team of scientists from Korean's Rural Development Administration and the Department of Horticulture at the University of Georgia tested the efficiency of volatile formaldehyde removal in 86 species of plants representing five general classes (ferns, woody foliage plants, herbaceous foliage plants, Korean native plants, and herbs). The results of the extensive research were published in HortScience.

Phytoremediation potential was assessed by exposing the plants to gaseous formaldehyde in airtight chambers constructed of inert materials and measuring the rate of removal. Osmunda japonica (Japanese royal fern), Selaginella tamariscina (Spikemoss), Davallia mariesii (Hare's-foot fern), Polypodium formosanum, Psidium guajava (Guava), Lavandula (Sweet Lavender), Pteris dispar, Pteris multifida (Spider fern), and Pelargonium (Geranium) were the most effective species tested. Ferns had the highest formaldehyde removal efficiency of the five classes of plants tested, with Osmunda japonica determined to be most effective of all 86 species, coming in at 50 times more effective than the least (D. deremensis) efficient species.

"Based on the wide range of formaldehyde removal efficiency among the plants tested, we separated the species into three general groups: excellent, intermediate, and poor", said corresponding author Kwang Jin Kim. "The species classified as excellent are considered desirable for use in homes and offices where the formaldehyde concentration in the air is a concern. It is evident from our results that certain species have the potential to improve interior environments and, in so doing, the health and well-being of the inhabitants".

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/45/10/1489

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>