Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study links dust to increased glacier melting, ocean productivity

02.03.2012
Researchers analyze dust concentrations and their effects off southern Iceland

A University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science-led study shows a link between large dust storms on Iceland and glacial melting. The dust is both accelerating glacial melting and contributing important nutrients to the surrounding North Atlantic Ocean. The results provide new insights on the role of dust in climate change and high-latitude ocean ecosystems.

UM Rosenstiel School Professor Joseph M. Prospero and colleagues Joanna E. Bullard and Richard Hodgkins (Loughborough University, U.K.) analyzed six years of dust concentrations collected at the Stórhöfi research station on the island of Heimaey, which is located 17 km (10.5 mi) off the south coast of Iceland. The results show large increases in dust concentration, which can be traced to dust sources adjacent to major glaciers on Iceland.

As the glaciers melt, rivers of black, volcanic-rich sediments flow into the surrounding land and nearby ocean. Intense windstorms, common in the high-latitudes, eventually sweep up the dried sediments. The resulting dust storms are clearly visible in satellite images that show huge dust plumes extending hundreds of kilometers south over the Atlantic Ocean. Iceland glaciers are melting at a high rate due to global warming and to sub-glacial volcanic activity.

"The dust in Iceland dust storms can also have an impact on the glaciers themselves," said Prospero, UM Rosenstiel professor emeritus and lead author on the study. "The black dust deposited on the glacier surface absorbs solar radiation thereby increasing the rates of glacial melting."

Iceland dust can also affect ocean processes over the North Atlantic. The researchers suggest that the iron-rich dust provides a late summer/early fall nutrient boost to the typically iron-depleted North Atlantic Ocean waters. The iron increases the ocean's primary productivity and stimulates the growth of marine biota. This, in turn, increases the draw down of CO2 from the atmosphere to the ocean.

Currently there is much research on global atmospheric dust processes but most of this research focuses on tropical and arid regions in Africa and the Middle East, the most active dust sources. This study is one of the few to look at high-latitude areas, and is the first to review measurements over such a long time period (February 1997 to December 2002).

The study shows that the dust transport in cold, high-latitude regions, such as Iceland, are comparable to concentrations seen at low latitude regions near the equator, in particular, the well known Saharan dust transport across the mid Atlantic, from the west coast of Africa to the Caribbean and South Florida.

Due to increased air temperatures linked to global climate change, glaciers worldwide are rapidly retreating. The melting of glaciers, including those on Iceland, would also contribute to sea level rise.

"The dust processes taking place on Iceland are likely to be occurring in other high latitude glacierized regions," said Prospero. "Similar glacier-related dust storms have been seen in Alaska and in Patagonia. On the basis of this research we might expect that cold climate dust activity will become more widespread and intense as the planet warms."

The study, titled "High-Latitude Dust Over the North Atlantic: Inputs from Icelandic Proglacial Dust Storms," was published in the March 2 issue of the journal Science. Prospero's co-authors include Joanna E. Bullard and Richard Hodgkins at Loughborough University's Polar and Alpine Research Centre.

About the University of Miami's Rosenstiel School

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu

Andrew Dechellis | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>