Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study links dust to increased glacier melting, ocean productivity

02.03.2012
Researchers analyze dust concentrations and their effects off southern Iceland

A University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science-led study shows a link between large dust storms on Iceland and glacial melting. The dust is both accelerating glacial melting and contributing important nutrients to the surrounding North Atlantic Ocean. The results provide new insights on the role of dust in climate change and high-latitude ocean ecosystems.

UM Rosenstiel School Professor Joseph M. Prospero and colleagues Joanna E. Bullard and Richard Hodgkins (Loughborough University, U.K.) analyzed six years of dust concentrations collected at the Stórhöfi research station on the island of Heimaey, which is located 17 km (10.5 mi) off the south coast of Iceland. The results show large increases in dust concentration, which can be traced to dust sources adjacent to major glaciers on Iceland.

As the glaciers melt, rivers of black, volcanic-rich sediments flow into the surrounding land and nearby ocean. Intense windstorms, common in the high-latitudes, eventually sweep up the dried sediments. The resulting dust storms are clearly visible in satellite images that show huge dust plumes extending hundreds of kilometers south over the Atlantic Ocean. Iceland glaciers are melting at a high rate due to global warming and to sub-glacial volcanic activity.

"The dust in Iceland dust storms can also have an impact on the glaciers themselves," said Prospero, UM Rosenstiel professor emeritus and lead author on the study. "The black dust deposited on the glacier surface absorbs solar radiation thereby increasing the rates of glacial melting."

Iceland dust can also affect ocean processes over the North Atlantic. The researchers suggest that the iron-rich dust provides a late summer/early fall nutrient boost to the typically iron-depleted North Atlantic Ocean waters. The iron increases the ocean's primary productivity and stimulates the growth of marine biota. This, in turn, increases the draw down of CO2 from the atmosphere to the ocean.

Currently there is much research on global atmospheric dust processes but most of this research focuses on tropical and arid regions in Africa and the Middle East, the most active dust sources. This study is one of the few to look at high-latitude areas, and is the first to review measurements over such a long time period (February 1997 to December 2002).

The study shows that the dust transport in cold, high-latitude regions, such as Iceland, are comparable to concentrations seen at low latitude regions near the equator, in particular, the well known Saharan dust transport across the mid Atlantic, from the west coast of Africa to the Caribbean and South Florida.

Due to increased air temperatures linked to global climate change, glaciers worldwide are rapidly retreating. The melting of glaciers, including those on Iceland, would also contribute to sea level rise.

"The dust processes taking place on Iceland are likely to be occurring in other high latitude glacierized regions," said Prospero. "Similar glacier-related dust storms have been seen in Alaska and in Patagonia. On the basis of this research we might expect that cold climate dust activity will become more widespread and intense as the planet warms."

The study, titled "High-Latitude Dust Over the North Atlantic: Inputs from Icelandic Proglacial Dust Storms," was published in the March 2 issue of the journal Science. Prospero's co-authors include Joanna E. Bullard and Richard Hodgkins at Loughborough University's Polar and Alpine Research Centre.

About the University of Miami's Rosenstiel School

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu

Andrew Dechellis | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Studies and Analyses:

nachricht How to design city streets more fairly
18.05.2020 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Insects: Largest study to date confirms declines on land, but finds recoveries in freshwater – Highly variable trends
24.04.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

NIST researchers boost microwave signal stability a hundredfold

26.05.2020 | Physics and Astronomy

Complex genetic regulation of flowering time

26.05.2020 | Life Sciences

'One-way' electronic devices enter the mainstream

26.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>