Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies key cause of chronic leukemia progression

05.03.2010
Researchers have discovered a key reason why a form of leukemia progresses from its more-treatable chronic phase to a life-threatening phase called blast crisis.

The study, led by cancer researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James), indicates that chronic myeloid leukemia (CML) progresses when immature white blood cells lose a molecule called miR-328.

Loss of the molecule traps the cells in a rapidly growing, immature state. The cells soon fill the bone marrow and spill into the bloodstream, a tell-tale sign that the disease has advanced to the blast crisis stage.

The research, published in the March 5th issue of the journal Cell, should provide a better understanding of the blast-crisis stage of CML, and it suggests a possible new treatment strategy for the disease, the researchers say.

"These findings indicate that the loss of miR-328 is probably essential for progression from the chronic phase of the disease to the blast crisis stage," says principal investigator Danilo Perrotti, associate professor of molecular virology, immunology and medical genetics and a member of the OSUCCC-James.

"Our findings also suggest that maintaining the level of this microRNA might represent a new therapeutic strategy for CML blast crisis patients who do not benefit from targeted agents such as imatinib (Gleevec) and dasatinib (Sprycel)," Perrotti says

The study also revealed a new function for microRNA. Researchers have known for some time that these molecules help regulate the kinds of proteins that cells make. But this study shows for the first time that microRNA molecules can also attach directly to protein molecules and alter their function.

In this case, miR-328 binds to a protein that prevents immature blood cells from maturing. "We believe that it normally acts as a decoy molecule, tying up the protein and enabling the white blood cells to mature as they should," Perrotti says.

During CML progression, however, the level of miR-328 drops, allowing the protein to be extremely active. This keeps the leukemic white blood cells from maturing and contributes to the transition from the chronic-disease phase to blast crisis phase.

"These findings may help unravel novel pathways responsible for the initiation and progression of leukemia generally," Perrotti says.

Funding from the National Cancer Institute and the U.S. Army, CML Research Program supported this research. Danilo Perrotti is a Scholar of The Leukemia and Lymphoma Society.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: CML Cancer Imatinib MicroRNA OSUCCC-James blast crisis blood cell dasatinib miR-328 white blood cell

More articles from Studies and Analyses:

nachricht Drought hits rivers first and more strongly than agriculture
06.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>