Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study first to use brain scans to forecast early reading difficulties

16.09.2014

Brain's white matter highly predictive of reading acquisition beyond effects of genetic predisposition

UC San Francisco researchers have used brain scans to predict how young children learn to read, giving clinicians a possible tool to spot children with dyslexia and other reading difficulties before they experience reading challenges.

In the United States, children usually learn to read for the first time in kindergarten and become proficient readers by third grade, according to the authors. In the study, researchers examined brain scans of 38 kindergarteners as they were learning to read formally at school and tracked their white matter development until third grade. The brain's white matter is essential for perceiving, thinking and learning.

The researchers found that the developmental course of the children's white matter volume predicted the kindergarteners' abilities to read.

... more about:
»Brain »Development »MS »UCSF »cognitive »dyslexia »scans

"We show that white matter development during a critical period in a child's life, when they start school and learn to read for the very first time, predicts how well the child ends up reading," said Fumiko Hoeft, MD, PhD, senior author and an associate professor of child and adolescent psychiatry at UCSF, and member of the UCSF Dyslexia Center.

The research is published online in Psychological Science.

Doctors commonly use behavioral measures of reading readiness for assessments of ability. Other measures such as cognitive (i.e. IQ) ability, early linguistic skills, measures of the environment such as socio-economic status, and whether there is a family member with reading problems or dyslexia are all common early factors used to assess risk of developing reading difficulties.

"What was intriguing in this study was that brain development in regions important to reading predicted above and beyond all of these measures," said Hoeft.

The researchers removed the effects of these commonly used assessments when doing the statistical analyses in order to assess how the white matter directly predicted future reading ability. They found that left hemisphere white matter in the temporo-parietal region just behind and above the left ear -- thought to be important for language, reading and speech -- was highly predictive of reading acquisition beyond effects of genetic predisposition, cognitive abilities, and environment at the outset of kindergarten. Brain scans improved prediction accuracy by 60 percent better at predicting reading difficulties than the compared to traditional assessments alone.

"Early identification and interventions are extremely important in children with dyslexia as well as most neurodevelopmental disorders," said Hoeft. "Accumulation of research evidence such as ours may one day help us identify kids who might be at risk for dyslexia, rather than waiting for children to become poor readers and experience failure."

According to the National Institute of Child and Human Development, as many as 15 percent of Americans have major trouble reading.

"Examining developmental changes in the brain over a critical period of reading appears to be a unique sensitive measure of variation and may add insight to our understanding of reading development in ways that brain data from one time point, and behavioral and environmental measures, cannot," said Chelsea Myers, BS, lead author and lab manager in UCSF's Laboratory for Educational NeuroScience. "The hope is that understanding each child's neurocognitive profiles will help educators provide targeted and personalized education and intervention, particularly in those with special needs."

###

Co-authors include Maaike Vandermosten, PhD of KU Leuven; Emily Farris, PhD of University of Texas Permian Basin; Roeland Hancock, PhD, Paul Gimenez, BA, Brandi Casto, MS, Miroslav Drahos, MS, Mandeep Tumber, MS, and Robert Hendren, DO, all of the Department of Psychiatry at UCSF; Jessica Black, PhD of School of Social Work at Boston College; and Charles Hulme, DPhil of Department of Psychology at University College London.

The study was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (K23 HD054720), Flora Family Foundation, UCSF Catalyst Award, UCSF Resource Allocation Program, Brain & Behavior Research Foundation Young Investigator Award, Stanford University Lucile Packard Foundation for Children's Health, Spectrum Child Health & Clinical and Translational Science Award and the Extraordinary Brain Series of the Dyslexia Foundation.

UC San Francisco (UCSF), now celebrating the 150th anniversary of its founding, is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic, biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital San Francisco. Please visit http://www.ucsf.edu.

Juliana Bunim | Eurek Alert!

Further reports about: Brain Development MS UCSF cognitive dyslexia scans

More articles from Studies and Analyses:

nachricht Detecting mental and physical stress via smartphone
22.11.2019 | Politecnico di milano

nachricht Virtual "moonwalk" for science reveals distortions in spatial memory
18.11.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

New antenna tech to equip ceramic coatings with heat radiation control

22.11.2019 | Materials Sciences

Pollinator friendliness can extend beyond early spring

22.11.2019 | Life Sciences

Wound healing in mucous tissues could ward off AIDS

22.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>