Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study first to use brain scans to forecast early reading difficulties

16.09.2014

Brain's white matter highly predictive of reading acquisition beyond effects of genetic predisposition

UC San Francisco researchers have used brain scans to predict how young children learn to read, giving clinicians a possible tool to spot children with dyslexia and other reading difficulties before they experience reading challenges.

In the United States, children usually learn to read for the first time in kindergarten and become proficient readers by third grade, according to the authors. In the study, researchers examined brain scans of 38 kindergarteners as they were learning to read formally at school and tracked their white matter development until third grade. The brain's white matter is essential for perceiving, thinking and learning.

The researchers found that the developmental course of the children's white matter volume predicted the kindergarteners' abilities to read.

... more about:
»Brain »Development »MS »UCSF »cognitive »dyslexia »scans

"We show that white matter development during a critical period in a child's life, when they start school and learn to read for the very first time, predicts how well the child ends up reading," said Fumiko Hoeft, MD, PhD, senior author and an associate professor of child and adolescent psychiatry at UCSF, and member of the UCSF Dyslexia Center.

The research is published online in Psychological Science.

Doctors commonly use behavioral measures of reading readiness for assessments of ability. Other measures such as cognitive (i.e. IQ) ability, early linguistic skills, measures of the environment such as socio-economic status, and whether there is a family member with reading problems or dyslexia are all common early factors used to assess risk of developing reading difficulties.

"What was intriguing in this study was that brain development in regions important to reading predicted above and beyond all of these measures," said Hoeft.

The researchers removed the effects of these commonly used assessments when doing the statistical analyses in order to assess how the white matter directly predicted future reading ability. They found that left hemisphere white matter in the temporo-parietal region just behind and above the left ear -- thought to be important for language, reading and speech -- was highly predictive of reading acquisition beyond effects of genetic predisposition, cognitive abilities, and environment at the outset of kindergarten. Brain scans improved prediction accuracy by 60 percent better at predicting reading difficulties than the compared to traditional assessments alone.

"Early identification and interventions are extremely important in children with dyslexia as well as most neurodevelopmental disorders," said Hoeft. "Accumulation of research evidence such as ours may one day help us identify kids who might be at risk for dyslexia, rather than waiting for children to become poor readers and experience failure."

According to the National Institute of Child and Human Development, as many as 15 percent of Americans have major trouble reading.

"Examining developmental changes in the brain over a critical period of reading appears to be a unique sensitive measure of variation and may add insight to our understanding of reading development in ways that brain data from one time point, and behavioral and environmental measures, cannot," said Chelsea Myers, BS, lead author and lab manager in UCSF's Laboratory for Educational NeuroScience. "The hope is that understanding each child's neurocognitive profiles will help educators provide targeted and personalized education and intervention, particularly in those with special needs."

###

Co-authors include Maaike Vandermosten, PhD of KU Leuven; Emily Farris, PhD of University of Texas Permian Basin; Roeland Hancock, PhD, Paul Gimenez, BA, Brandi Casto, MS, Miroslav Drahos, MS, Mandeep Tumber, MS, and Robert Hendren, DO, all of the Department of Psychiatry at UCSF; Jessica Black, PhD of School of Social Work at Boston College; and Charles Hulme, DPhil of Department of Psychology at University College London.

The study was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (K23 HD054720), Flora Family Foundation, UCSF Catalyst Award, UCSF Resource Allocation Program, Brain & Behavior Research Foundation Young Investigator Award, Stanford University Lucile Packard Foundation for Children's Health, Spectrum Child Health & Clinical and Translational Science Award and the Extraordinary Brain Series of the Dyslexia Foundation.

UC San Francisco (UCSF), now celebrating the 150th anniversary of its founding, is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic, biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital San Francisco. Please visit http://www.ucsf.edu.

Juliana Bunim | Eurek Alert!

Further reports about: Brain Development MS UCSF cognitive dyslexia scans

More articles from Studies and Analyses:

nachricht New model connects respiratory droplet physics with spread of Covid-19
21.07.2020 | University of California - San Diego

nachricht Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus
03.07.2020 | Klinikum der Universität München

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>