Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds That Sleep Selectively Preserves Emotional Memories

18.08.2008
A new study offers insights into the specific components of emotional memories, suggesting that sleep plays a key role in determining what we remember -- and what we forget.

As poets, songwriters and authors have described, our memories range from misty water-colored recollections to vividly detailed images of the times of our lives.

Now, a study led by researchers at Beth Israel Deaconess Medical Center (BIDMC) and Boston College offers new insights into the specific components of emotional memories, suggesting that sleep plays a key role in determining what we remember – and what we forget.

Reported in the August 2008 issue of the journal Psychological Science, the findings show that a period of slumber helps the brain to selectively preserve and enhance those aspects of a memory that are of greatest emotional resonance, while at the same time diminishing the memory’s neutral background details.

“This tells us that sleep’s role in emotional memory preservation is more than just mechanistic,” says the study’s first author Jessica Payne, PhD, a Harvard University research fellow in the Division of Psychiatry at BIDMC. “In order to preserve what it deems most important, the brain makes a tradeoff, strengthening the memory’s emotional core and obscuring its neutral background.”

Previous studies have established the key role that sleep plays in procedural memory, demonstrating that the consolidation of procedural skills (such as typing or playing the piano) is greatly enhanced following a period of sleep.

But sleep’s importance in the development of episodic memories – in particular, those with emotional resonance– has been less clear.

“Emotional memories usually contain highly charged elements – for example, the car that sideswiped us on the ride home – along with other elements that are only tangentially related to the emotion, such as the name of the street we were traveling on or what store we’d just passed,” explains study author Elizabeth Kensinger, PhD, an Assistant Professor in the College of Arts and Sciences at Boston College. “We were interested in examining whether sleep would affect memory for all of these elements equally, or whether sleep might allow some of the event features to decay at a faster rate than others.”

The authors tested 88 college students. Study participants were shown scenes that depicted either neutral subjects on a neutral background (a car parked on a street in front of shops) or negatively arousing subjects on a neutral background (a badly crashed car parked on a similar street). The participants were then tested separately on their memories of both the central objects in the pictures and the backgrounds in the scenes. In this way, memory could be compared for the emotional aspects of a scene (the crashed car) versus the non-emotional aspects of the scene (the street on which the car had crashed.)

Subjects were divided into three groups. The first group underwent memory testing after 12 hours spent awake during the daytime; the second group was tested after 12 nighttime hours, including their normal period of nighttime sleep; and the third baseline group was tested 30 minutes after viewing the images, in either the morning or evening.

“Our results revealed that the study subjects who stayed awake all day largely forgot the entire negative scene [they had seen], with their memories of both the central objects and the backgrounds decaying at similar rates,” says Payne. But, she adds, among the individuals who were tested after a period of sleep, memory recall for the central negative objects (i.e. the smashed car) was preserved in detail.

“After an evening of sleep, the subjects remembered the emotional items [smashed car] as accurately as the subjects whose memories had been tested only 30 minutes after looking at the scenes,” explains Kensinger. “By contrast, sleep did little to preserve memory for the backgrounds [i.e. street scenes] and so memory for those elements reached a comparably low level after a night of sleep as it did after a day spent awake.”

“This is consistent with the possibility that the individual components of emotional scene memory become ‘unbound’ during sleep,” adds Payne, explaining that “unbinding” enables the sleeping brain to selectively preserve only that information which it calculates to be most salient and worthy of remembering. A real-world example of this tradeoff, she adds, is the “weapon focus effect” in which crime victims vividly remember an assailant’s weapon, but have little memory for other important aspects of the crime scene. Traumatic memories, such as the flashbacks experienced among individuals with post-traumatic stress disorder, can demonstrate similar disparities, with some aspects of an experience seemingly engraved in memory while other details are erased.

“Sleep is a smart, sophisticated process,” adds Payne. “You might say that sleep is actually working at night to decide what memories to hold on to and what to let go of.”

This study was supported, in part, by grants from the National Science Foundation and the National Institute of Mental Health. Coauthors include Elizabeth Kensinger, PhD, of Boston College, Robert Stickgold, PhD, of Beth Israel Deaconess Medical Center; and Kelley Swanberg of Harvard University.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and consistently ranks among the top four in National Institutes of Health funding among independent hospitals nationwide. BIDMC is clinically affiliated with the Joslin Diabetes Center and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>