Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds predators have outsized influence over habitats

15.06.2012
A grasshopper's change in diet to high-energy carbohydrates while being hunted by spiders may affect the way soil releases carbon dioxide into the atmosphere, according to Yale and Hebrew University researchers in Science.

Grasshoppers like to munch on nitrogen-rich grass because it stimulates their growth and reproduction. But when spiders enter the picture, grasshoppers cope with the stress from fear of predation by shifting to carbohydrate-rich plants, setting in motion dynamic changes to the ecosystem they inhabit.

"Under stressful conditions they go to different parts of the grocery store and choose different foods, changing the makeup of the plant community," said Oswald Schmitz, a co-author of the study,"Fear of Predation Slows Plant-Litter Decomposition," and Oastler Professor of Population and Community Ecology at the Yale School of Forestry & Environmental Studies (F&ES).

The high-energy, carbohydrate diet also tilts a grasshopper's body chemistry toward carbon at the expense of nitrogen. So when a grasshopper dies, its carcass breaks down more slowly, thus depriving the soil of high-quality fertilizer and slowing the decomposition of uneaten plants. Microbes in the soil require a lot of nitrogen to function and to produce the enzymes that break down organic matter.

"It only takes a slight change in the chemical composition of that animal biomass to fundamentally alter how much carbon dioxide the microbial pool is releasing to the atmosphere while it is decomposing plant organic matter," said Schmitz. "So this shows that animals could potentially have huge effects on the global carbon balance because they're changing the way microbes respire organic matter."

The researchers found that the rate at which the organic matter of leaves decomposed increased between 60 percent and 200 percent in stress-free conditions relative to stressed conditions, which they consider "huge." "Climate and litter quality are considered the main controls on organic-matter decomposition, but we show that aboveground predators change how soil microbes break down organic matter," said Mark Bradford, a co-author of the study and assistant professor of terrestrial ecosystem ecology at F&ES.

Schmitz added: "What it means is that we're not paying enough attention to the control that animals have over what we view as a classically important process in ecosystem functioning."

The researchers took soil from the field, put it in test tubes and ground up grasshopper carcasses obtained either from predation or predation-free environments. They then sprinkled the powder atop the soil, where the microbes digested it. When the grasshopper carcasses were completely decomposed, the researchers added leaf litter and then measured the rate of leaf-litter decomposition. The experiment was then replicated in the field at Yale Myers Forest in northeastern Connecticut.

"It was a two-stage process where the grasshoppers were used to prime the soil, and then we measured the consequences of that priming," said Schmitz.

Schmitz said that the effect of animals on ecosystems is disproportionately larger than their biomass would suggest. "Traditionally people have thought animals had no important role in recycling of organic matter, because their biomass is relatively small to all of that plant material that's entering ecosystems," he said. "We need to pay more attention to the role of animals because in an era of biodiversity loss we're losing many top predators and larger herbivores from ecosystems."

The other co-authors Michael Strickland, a Yale postdoctoral associate who is joining the faculty at Virginia Tech this fall, and Dror Hawlena, a senior lecturer at the Alexander Silberman Institute of Life Sciences at the Hebrew University of Jerusalem and former postdoctoral associate in Schmitz's lab.

David DeFusco | EurekAlert!
Further information:
http://www.yale.edu

More articles from Studies and Analyses:

nachricht ECG procedure indicates whether an implantable defibrillator will extend a patient's life
02.09.2019 | Technische Universität München

nachricht Fracking prompts global spike in atmospheric methane
14.08.2019 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>