Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds chlorophyll can help prevent cancer - but questions traditional research methods

13.01.2012
A recent study at Oregon State University found that the chlorophyll in green vegetables offers protection against cancer when tested against the modest carcinogen exposure levels most likely to be found in the environment.

However, chlorophyll actually increases the number of tumors at very high carcinogen exposure levels.

Beyond confirming the value of chlorophyll, the research raises serious questions about whether traditional lab studies done with mice and high levels of toxic exposure are providing accurate answers to what is a real health risk, what isn’t, and what dietary or pharmaceutical approaches are useful.

The findings, published in the journal Food and Chemical Toxicology, were done using 12,360 rainbow trout as laboratory models, instead of more common laboratory mice. Rodent studies are much more expensive, forcing the use of fewer specimens and higher carcinogen exposures.

“There’s considerable evidence in epidemiologic and other clinical studies with humans that chlorophyll and its derivative, chlorophyllin, can protect against cancer,” said Tammie McQuistan, a research assistant working with George Bailey, a professor emeritus in the Linus Pauling Institute at OSU.

“This study, like others before it, found that chlorophyll can reduce tumors, up to a point,” McQuistan said. “But at very high doses of the same carcinogen, chlorophyll actually made the problem worse. This questions the value of an approach often used in studying cancer-causing compounds.”

OSU experts in recent years have become pioneers in the use of rainbow trout as a model for biomedical research, in part because the fish react in similar ways to those of rodents, but also because scientists can use thousands of them – instead of dozens or hundreds of mice – and do experiments that would not otherwise be possible.

In that context, this study raises questions about a fundamental premise of much medical research – expose a laboratory animal to a compound at high levels, observe the result, and predict that a proportional amount of that same result would be present at low levels of exposure.

In one part of the study, trout were exposed to fairly moderate levels of a known carcinogen, but also given chlorophyll. This reduced their number of liver tumors by 29-64 percent, and stomach tumors by 24-45 percent. But in another part of the study, using much higher and unrealistic doses of the same carcinogen, the use of chlorophyll caused a significant increase in the number of tumors.

In other words, traditional research with small numbers of animals fed very high doses of a carcinogen might conclude that chlorophyll has the potential to increase human cancer risk. This study, and other evidence and trials, concludes just the opposite.

It also found that the protective mechanism of chlorophyll is fairly simple – it just binds with and sequesters carcinogens within the gastrointestinal tract until they are eliminated from the body. At the lower carcinogen doses and cancer rates relevant to humans, chlorophyll was strongly protective.

“The central assumption of such experiments is that intervention effects at high carcinogen dose will apply equally at lower carcinogen doses,” the researchers wrote in their report. “Contrary to the usual assumption, the outcomes in the major target organ were strikingly dependent on carcinogen dose.”

OSU experts have argued that in some studies rainbow trout can produce better, more accurate, real-world results compared to traditional rodent animal models and relevant to humans, because many more specimens can be used and lower doses of toxins studied. Experiments done with fish may be about 20 times cheaper and, in the end, more scientifically valid, they say.

“Results derived at high carcinogen doses and high tumor responses may be irrelevant for human intervention,” the scientists said in their conclusion.

This work was supported by the National Institutes of Health.

About the Linus Pauling Institute: The Linus Pauling Institute at OSU is a world leader in the study of micronutrients and their role in promoting optimum health or preventing and treating disease. Major areas of research include heart disease, cancer, aging and neurodegenerative disease.

George Bailey | EurekAlert!
Further information:
http://oregonstate.edu

More articles from Studies and Analyses:

nachricht Fracking prompts global spike in atmospheric methane
14.08.2019 | European Geosciences Union

nachricht Virtual treasure hunt shows brain maps time sequence of memories
06.08.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

OHIO professor Hla develops robust molecular propeller for unidirectional rotations

22.08.2019 | Life Sciences

127-year-old physics problem solved

22.08.2019 | Physics and Astronomy

Physicists create world's smallest engine

22.08.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>